Reducing Degeneracy in Maximum Entropy Models of Networks

Reducing Degeneracy in Maximum Entropy Models of Networks

ID:40698259

大小:1.60 MB

頁(yè)數(shù):5頁(yè)

時(shí)間:2019-08-06

Reducing Degeneracy in Maximum Entropy Models of Networks_第1頁(yè)
Reducing Degeneracy in Maximum Entropy Models of Networks_第2頁(yè)
Reducing Degeneracy in Maximum Entropy Models of Networks_第3頁(yè)
Reducing Degeneracy in Maximum Entropy Models of Networks_第4頁(yè)
Reducing Degeneracy in Maximum Entropy Models of Networks_第5頁(yè)
資源描述:

《Reducing Degeneracy in Maximum Entropy Models of Networks》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、ReducingDegeneracyinMaximumEntropyModelsofNetworksSzabolcsHorvát,1évaCzabarka,2andZoltánToroczkai11DepartmentofPhysics,UniversityofNotreDame,NotreDame,IN,46556USA2DepartmentofMathematics,UniversityofSouthCarolina,Columbia,SC,29208USABasedonJaynes’smaximumentropyprinciple,exponenti

2、alrandomgraphsprovideafamilyofprincipledmodelsthatallowthepredictionofnetworkpropertiesasconstrainedbyempiricaldata.However,theiruseisoftenhinderedbythedegeneracyproblemcharacterizedbyspontaneoussymmetry-breaking,wherepredictionssimplyfail.Hereweshowthatdegeneracyappearswhenthecor

3、respondingdensityofstatesfunctionisnotlog-concave.Weproposeasolutiontothedegeneracyproblemforalargeclassofmodelsbyexploitingthenonlinearrelationshipsbetweentheconstrainedmeasurestoconvexifythedomainofthedensityofstates.Wedemonstratethee?ectivenessofthemethodonexamples,includingonZ

4、achary’skarateclubnetworkdata.PACSnumbers:89.75.Hc,89.70.Cf,05.20.-y,87.23.GeOurunderstandingandmodelingofcomplexsystemspresentouranalysisandresultsusingthelanguageofisalwaysbasedonpartialinformation,limiteddataandnetworksandERGmodels,however,our?ndingsareknowledge.Theonlyprincipl

5、edmethodofpredictinggenerallyapplicable.LetusconsiderthesetGNofallpropertiesofacomplexsystemsubjecttowhatisknownlabeledsimplegraphs(noparalleledges,orself-loops)on(dataandknowledge)isbasedontheMaximumEntropyNnodes,representingthemicrostates7!G,andanPrincipleofJaynes[1,2].Usingthi

6、sprinciple,here-arbitrarysetofgraphmeasures,orobservablesm(G)=derivedtheformalismofstatisticalmechanics,bothclas-m1(G);:::;mK(G),e.g.,thenumberofedgesmj,2-starssical[1]andthetime-dependentquantumdensity-matrixm_,trianglesmM,thedegreeofthe9thnode.Theseformalism[2],usingShannon’sinf

7、ormationentropy[3].measuresrepresenttheconstraintsandweassumethatThemethodgeneratesaprobabilitydistributionP()wearegivenspeci?cvaluesm0,forthem(inputdata).overallthepossible(micro)statesofthesystembyTheymaycomefromanempiricalnetworkG0,orcouldPmaximizingtheentropyS[P]=