(已發(fā)表) Quasi-Stochastic Integration Filter for Nonlinear Estimation

(已發(fā)表) Quasi-Stochastic Integration Filter for Nonlinear Estimation

ID:40702067

大?。?.10 MB

頁數(shù):11頁

時(shí)間:2019-08-06

(已發(fā)表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第1頁
(已發(fā)表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第2頁
(已發(fā)表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第3頁
(已發(fā)表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第4頁
(已發(fā)表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第5頁
資源描述:

《(已發(fā)表) Quasi-Stochastic Integration Filter for Nonlinear Estimation》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、HindawiPublishingCorporationMathematicalProblemsinEngineeringVolume2014,ArticleID967127,10pageshttp://dx.doi.org/10.1155/2014/967127ResearchArticleQuasi-StochasticIntegrationFilterforNonlinearEstimationYong-GangZhang,Yu-LongHuang,Zhe-MinWu,andNingLiCollegeofAutomation,HarbinEngi

2、neeringUniversity,No.145NantongStreet,NangangDistrict,Harbin150001,ChinaCorrespondenceshouldbeaddressedtoYu-LongHuang;heuedu@163.comReceived21October2013;Revised18May2014;Accepted24May2014;Published23June2014AcademicEditor:DanSimonCopyright?2014Yong-GangZhangetal.Thisisanopenacc

3、essarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.Inpracticalapplications,numericalinstabilityproblem,systematicerrorproblemcausedbynonlinearapproximation,andn

4、onlocalsamplingproblemforhigh-dimensionalapplications,existinunscentedKalmanfilter(UKF).Tosolvetheseproblems,aquasi-stochasticintegrationfilter(QSIF)fornonlinearestimationisproposedinthispaper.nonlocalsamplingproblemissolvedbasedontheunbiasedpropertyofstochasticsphericalintegrat

5、ionrule,whichcanalsoreducesystematicerrorandimprovefilteringaccuracy.Inaddition,numericalinstabilityproblemissolvedbyusingfixedradialintegrationrule.Simulationsofbearing-onlytrackingmodelandnonlinearfilteringproblemwithdifferentstatedimensionsshowthattheproposedQSIFhashigherfilt

6、eringaccuracyandgoodnumericalstabilityascomparedwithexistingmethods,anditcanalsosolvenonlocalsamplingproblemeffectively.1.IntroductionTheunscentedtransformation-(UT-)basedunscentedKalmanfilter(UKF)isatypicalGaussianapproximatefilterNonlinearfilteringhasbeenwidelyusedinmanyappli-

7、andhasbeenwidelyusedduetoitseaseofimplementation,cations.Generally,filteringproblemcanbeaddressedbymodestcomputationalcost,andappropriateperformanceusingBayesianestimationtheory,whichprovidesanoptimal[12,13].However,UKFsuffersfromthreemainproblemssolutionfordynamicstateestimatio

8、nproblembycomputinginitspracticalapplications:n

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。