Recent Advances in Convolutional Neural Networks

Recent Advances in Convolutional Neural Networks

ID:40724431

大小:498.10 KB

頁數(shù):16頁

時間:2019-08-06

Recent Advances in Convolutional Neural Networks_第1頁
Recent Advances in Convolutional Neural Networks_第2頁
Recent Advances in Convolutional Neural Networks_第3頁
Recent Advances in Convolutional Neural Networks_第4頁
Recent Advances in Convolutional Neural Networks_第5頁
資源描述:

《Recent Advances in Convolutional Neural Networks》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫。

1、1RecentAdvancesinConvolutionalNeuralNetworksJiuxiangGu?,ZhenhuaWang?,JasonKuen,LianyangMa,AmirShahroudy,BingShuai,TingLiu,XingxingWang,andGangWang,Member,IEEEAbstract—Inthelastfewyears,deeplearninghasledtoverythem,fourrepresentativeworksareZFNet[7],VGGNet[8],goodperformanceonavarietyofproble

2、ms,suchasvisualGoogleNet[9]andResNet[10].Fromtheevolutionoftherecognition,speechrecognitionandnaturallanguageprocessing.architectures,atypicaltrendisthatthenetworksaregettingAmongdifferenttypesofdeepneuralnetworks,convolutionaldeeper,e.g.,ResNet,whichwonthechampionofILSVRCneuralnetworkshaveb

3、eenmostextensivelystudied.Duetothelackoftrainingdataandcomputingpowerinearlydays,itis2015,isabout20timesdeeperthanAlexNetand8timeshardtotrainalargehigh-capacityconvolutionalneuralnetworkdeeperthanVGGNet.Byincreasingdepth,thenetworkcanwithoutover?tting.Aftertherapidgrowthintheamountofthebette

4、rapproximatethetargetfunctionwithincreasednon-annotateddataandtherecentimprovementsinthestrengthsoflinearityandgetbetterfeaturerepresentations.However,itgraphicsprocessorunits(GPUs),theresearchonconvolutionalalsoincreasesthecomplexityofthenetwork,whichmakesneuralnetworkshasbeenemergedswiftly

5、andachievedstate-of-the-artresultsonvarioustasks.Inthispaper,weprovideabroadthenetworkbemoredif?culttooptimizeandeasiertogetsurveyoftherecentadvancesinconvolutionalneuralnetworks.over?tting.Alongthisway,variousmethodsareproposedtoBesides,wealsointroducesomeapplicationsofconvolutionaldealwith

6、theseproblemsinvariousaspects.Inthispaper,weneuralnetworksincomputervision.trytogiveacomprehensivereviewofrecentadvancesandIndexTerms—ConvolutionalNeuralNetwork,Deeplearning.givesomethoroughdiscussions.Inthefollowingsections,weidentifybroadcategoriesofworksrelatedtoCNN.We?rstgiveanoverviewof

7、thebasicI.INTRODUCTIONcomponentsofCNNinSectionII.Then,weintroducesomeONVOLUTIONALNeuralNetwork(CNN)isawell-recentimprovementsondifferentaspectsofCNNincludingCknowndeeplearningarchitectureinspiredbythenaturalconvolutionallayer,poolinglayer,activatio

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。