資源描述:
《VIsualizing and understanding convolutional networks(ECCV 2010)》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、VisualizingandUnderstandingConvolutionalNetworksMatthewD.ZeilerandRobFergusDept.ofComputerScience,NewYorkUniversity,USA{zeiler,fergus}@cs.nyu.eduAbstract.LargeConvolutionalNetworkmodelshaverecentlydemon-stratedimpressiveclassi?cationperformanceontheImageNetbench-markKrizhevskyeta
2、l.[18].Howeverthereisnoclearunderstandingofwhytheyperformsowell,orhowtheymightbeimproved.Inthispaperweexplorebothissues.Weintroduceanovelvisualizationtechniquethatgivesinsightintothefunctionofintermediatefeaturelayersandtheoper-ationoftheclassi?er.Usedinadiagnosticrole,thesevisua
3、lizationsallowusto?ndmodelarchitecturesthatoutperformKrizhevskyetal.ontheImageNetclassi?cationbenchmark.Wealsoperformanablationstudytodiscovertheperformancecontributionfromdi?erentmodellayers.WeshowourImageNetmodelgeneralizeswelltootherdatasets:whenthesoftmaxclassi?erisretrained,
4、itconvincinglybeatsthecurrentstate-of-the-artresultsonCaltech-101andCaltech-256datasets.1IntroductionSincetheirintroductionbyLeCunetal.[20]intheearly1990’s,ConvolutionalNetworks(convnets)havedemonstratedexcellentperformanceattaskssuchashand-writtendigitclassi?cationandfacedetecti
5、on.Inthelast18months,sev-eralpapershaveshownthattheycanalsodeliveroutstandingperformanceonmorechallengingvisualclassi?cationtasks.Ciresanetal.[4]demonstratestate-of-the-artperformanceonNORBandCIFAR-10datasets.Mostnotably,Krizhevskyetal.[18]showrecordbeatingperformanceontheImageNe
6、t2012classi?cationbenchmark,withtheirconvnetmodelachievinganerrorrateof16.4%,comparedtothe2ndplaceresultof26.1%.Followingonfromthiswork,Girshicketal.[10]haveshownleadingdetectionperformanceonthePASCALVOCdataset.Sev-eralfactorsareresponsibleforthisdramaticimprovementinperformance:
7、(i)theavailabilityofmuchlargertrainingsets,withmillionsoflabeledexamples;(ii)powerfulGPUimplementations,makingthetrainingofverylargemodelspracti-caland(iii)bettermodelregularizationstrategies,suchasDropout[14].Despitethisencouragingprogress,thereisstilllittleinsightintotheinterna
8、loperationandbehaviorofthesecomplexmodel