VIsualizing and understanding convolutional networks(ECCV 2010)

VIsualizing and understanding convolutional networks(ECCV 2010)

ID:40729557

大?。?.25 MB

頁數(shù):16頁

時間:2019-08-06

VIsualizing and understanding convolutional networks(ECCV 2010)_第1頁
VIsualizing and understanding convolutional networks(ECCV 2010)_第2頁
VIsualizing and understanding convolutional networks(ECCV 2010)_第3頁
VIsualizing and understanding convolutional networks(ECCV 2010)_第4頁
VIsualizing and understanding convolutional networks(ECCV 2010)_第5頁
資源描述:

《VIsualizing and understanding convolutional networks(ECCV 2010)》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、VisualizingandUnderstandingConvolutionalNetworksMatthewD.ZeilerandRobFergusDept.ofComputerScience,NewYorkUniversity,USA{zeiler,fergus}@cs.nyu.eduAbstract.LargeConvolutionalNetworkmodelshaverecentlydemon-stratedimpressiveclassi?cationperformanceontheImageNetbench-markKrizhevskyeta

2、l.[18].Howeverthereisnoclearunderstandingofwhytheyperformsowell,orhowtheymightbeimproved.Inthispaperweexplorebothissues.Weintroduceanovelvisualizationtechniquethatgivesinsightintothefunctionofintermediatefeaturelayersandtheoper-ationoftheclassi?er.Usedinadiagnosticrole,thesevisua

3、lizationsallowusto?ndmodelarchitecturesthatoutperformKrizhevskyetal.ontheImageNetclassi?cationbenchmark.Wealsoperformanablationstudytodiscovertheperformancecontributionfromdi?erentmodellayers.WeshowourImageNetmodelgeneralizeswelltootherdatasets:whenthesoftmaxclassi?erisretrained,

4、itconvincinglybeatsthecurrentstate-of-the-artresultsonCaltech-101andCaltech-256datasets.1IntroductionSincetheirintroductionbyLeCunetal.[20]intheearly1990’s,ConvolutionalNetworks(convnets)havedemonstratedexcellentperformanceattaskssuchashand-writtendigitclassi?cationandfacedetecti

5、on.Inthelast18months,sev-eralpapershaveshownthattheycanalsodeliveroutstandingperformanceonmorechallengingvisualclassi?cationtasks.Ciresanetal.[4]demonstratestate-of-the-artperformanceonNORBandCIFAR-10datasets.Mostnotably,Krizhevskyetal.[18]showrecordbeatingperformanceontheImageNe

6、t2012classi?cationbenchmark,withtheirconvnetmodelachievinganerrorrateof16.4%,comparedtothe2ndplaceresultof26.1%.Followingonfromthiswork,Girshicketal.[10]haveshownleadingdetectionperformanceonthePASCALVOCdataset.Sev-eralfactorsareresponsibleforthisdramaticimprovementinperformance:

7、(i)theavailabilityofmuchlargertrainingsets,withmillionsoflabeledexamples;(ii)powerfulGPUimplementations,makingthetrainingofverylargemodelspracti-caland(iii)bettermodelregularizationstrategies,suchasDropout[14].Despitethisencouragingprogress,thereisstilllittleinsightintotheinterna

8、loperationandbehaviorofthesecomplexmodel

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。