Fundamentals of Machine Learning

Fundamentals of Machine Learning

ID:40843635

大?。?65.82 KB

頁數(shù):52頁

時間:2019-08-08

Fundamentals of Machine Learning_第1頁
Fundamentals of Machine Learning_第2頁
Fundamentals of Machine Learning_第3頁
Fundamentals of Machine Learning_第4頁
Fundamentals of Machine Learning_第5頁
資源描述:

《Fundamentals of Machine Learning》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、Chapter2FundamentalsofMachineLearning2.1LearningMethodsLearningisafundamentalcapabilityofneuralnetworks.Learningrulesarealgo-rithmsfor?ndingsuitableweightsWand/orothernetworkparameters.Learningofaneuralnetworkcanbeviewedasanonlinearoptimizationproblemf

2、or?ndingasetofnetworkparametersthatminimizethecostfunctionforgivenexamples.Thiskindofparameterestimationisalsocalledalearningortrainingalgorithm.Neuralnetworksareusuallytrainedbyepoch.Anepochisacompleterunwhenallthetrainingexamplesarepresentedtothenetw

3、orkandareprocessedusingthelearningalgorithmonlyonce.Afterlearning,aneuralnetworkrepresentsacom-plexrelationship,andpossessestheabilityforgeneralization.Tocontrolalearningprocess,acriterionisde?nedtodecidethetimeforterminatingtheprocess.Thecomplexityofa

4、nalgorithmisusuallydenotedasO(m),indicatingthattheorderofnumberof?oating-pointoperationsism.Learningmethodsareconventionallydividedintosupervised,unsupervised,andreinforcementlearning;theseschemesareillustratedinFig.2.1.xpandyparetheinputandoutputofthe

5、pthpatterninthetrainingset,?ypistheneuralnetworkoutputforthepthinput,andEisanerrorfunction.Fromastatisticalviewpoint,unsuper-visedlearninglearnsthepdfofthetrainingset,p(x),whilesupervisedlearninglearnsaboutthepdfofp(y

6、x).Supervisedlearningiswidelyusedi

7、nclassi?cation,approx-imation,control,modelingandidenti?cation,signalprocessing,andoptimization.Unsupervisedlearningschemesaremainlyusedforclustering,vectorquantization,featureextraction,signalcoding,anddataanalysis.Reinforcementlearningisusuallyusedin

8、controlandarti?cialintelligence.Inlogicandstatisticalinference,transductionisreasoningfromobserved,spe-ci?c(training)casestospeci?c(test)cases.Incontrast,inductionisreasoningfromobservedtrainingcasestogeneralrules,whicharethenappliedtothetestcases.Mach

9、inelearningfallsintotwobroadclasses:inductivelearningortransductivelearning.Inductivelearningpursuesthestandardgoalinmachinelearning,whichistoaccuratelyclassifytheentireinputspace.Incontrast,transductivelearningfocusesK.-L.DuandM.N.S.Sw

當前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。