From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group

From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group

ID:40843646

大小:400.12 KB

頁(yè)數(shù):23頁(yè)

時(shí)間:2019-08-08

From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group_第1頁(yè)
From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group_第2頁(yè)
From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group_第3頁(yè)
From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group_第4頁(yè)
From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group_第5頁(yè)
資源描述:

《From Random Matrix Theory to Coding Theory_ Volume of a Metric Ball in Unitary Group》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)

1、1FromRandomMatrixTheorytoCodingTheory:VolumeofaMetricBallinUnitaryGroupLuWei,Renaud-AlexandrePitaval,JukkaCorander,andOlavTirkkonenAbstractVolumeestimatesofmetricballsinmanifolds?nddiverseapplicationsininformationandcodingtheory.Inthispaper,somenewresultsforthevolumeofametricballinunitarygroupared

2、erivedviavarioustoolsfromrandommatrixtheory.The?rstresultisanintegralrepresentationoftheexactvolume,whichinvolvesaToeplitzdeterminantofBesselfunctions.Theconnectiontomatrix-variatehypergeometricfunctionsandSzego’sstronglimittheoremleadindependentlyfromthe?nitesizeformula?toanasymptoticone.Theconve

3、rgenceofthelimitingformulaisexceptionallyfastduetoanunderlyingmock-Gaussianbehavior.Theproposedvolumeestimateenablessimplebutaccurateanalyticalevaluationofcoding-theoreticboundsofunitarycodes.Inparticular,theGilbert-VarshamovlowerboundandtheHammingupperboundoncardinalityaswellastheresultingboundso

4、ncoderateandminimumdistancearederived.Moreover,boundsonthescalinglawofcoderatearefound.Lastly,aclosed-formboundondiversitysumrelevanttounitaryspace-timecodesisobtained,whichwasonlycomputednumericallyinliterature.arXiv:1506.07259v1[cs.IT]24Jun2015IndexTermsCoding-theoreticbounds,randommatrixtheory,

5、unitarygroup,volumeofmetricballs.L.WeiandJ.CoranderarewiththeDepartmentofMathematicsandStatistics,UniversityofHelsinki,Finland(e-mails:{lu.wei,jukka.corander}@helsinki.?).R.-A.PitavaliswiththeDepartmentofMathematicsandSystemsAnalysis,AaltoUniversity,Finland(e-mail:renaud-alexandre.pitaval@aalto.?)

6、.O.TirkkoneniswiththeDepartmentofCommunicationsandNetworking,AaltoUniversity,Finland(e-mail:olav.tirkkonen@aalto.?).Thisworkwaspresentedinpartat2015IEEEInternationalSymposiumonInformationTheory.June25,2015DRAFT2I.INTRODUCTIONDeterminingthevolumeofmetricballsinRiemannianmanifold,inparticularunitary

7、group,isthekeytounderstandseveralcodingandinformationtheoreticalquantities.Performanceanalysisofunitaryspace-timecodes[1–3]requirestheknowledgeofvolumeintheunitarygroup[4,5].Forchannelquantizationsinprecodedmulti

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。