資源描述:
《Linear Systems in LabVIEW Linear Systems in LabVIEW》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、ApplicationNote039LinearSystemsinLabVIEW?J.Kodosky,E.PérezPh.D.IntroductionThisapplicationnotedescribesthedifferenceequationsfordiscrete-time,time-invariantlinearsystemsandhowtouseLabVIEWblockdiagramstoimplementtheseequations.ThisapplicationnotealsodiscussestheZtransform,signalflowgraphs,discret
2、einputandoutputsequences,andanexamplethatmodelsasimple,linear,time-invariantsystem.SignalsandSystemsTheconceptsofsignalsandsystemsariseinawidevarietyoffieldssuchastelecommunications,aerospaceengineering,biomedicalengineering,acoustics,chemistry,geophysics,andimageprocessing.Asignalisavariationof
3、someform,andasystemisanyprocesswhichtransformsasignal(Figure1).Figure1.SignalsandSystemThemathematicalmodelofasignalissimplyafunctionofoneormoreindependentvariables,forexampleh(t)andg(x,y),andthemathematicalmodelofasystemisatransformationT{?}thatoperatesonafunction.Thediscussioninthisapplication
4、noteislimitedtooneindependentvariablebecausethesameprinciplesapplytotwoormoreindependentvariables.Theindependentvariabletisreferredtoastime.Therelationshipbetweensignalsandsystemissummarizedinequation(1)forthecaseofasingleindependentvariabley(t)=T{x(t)}(1)wherex(t)istheinputsignalandy(t)isthesys
5、tem'sresponsetotheinputsignal.340478-01?Copyright1993NationalInstrumentsCorporation.Allrightsreserved.February1993Alinearsystemisasystemthatobeysthesuperpositionprinciple.Thatis,iftheinputtothesystemisalinearcombinationofsignals,thentheoutputisthelinearcombination(superposition)oftheresponsesgen
6、eratedbyeachsignal.Thesuperpositionprincipleismathematicallysummarizedinequations(2)through(4).x(t)=a1x1(t)+a2x2(t)+…+anxn(t)(2)y(t)=a1y1(t)+a2y2(t)+…+anyn(t)(3)yi(t)=T{xi(t)},i=1,2,…,n(4)whereallaiarescalarvalues.Atime-invariantsystemisasystemwhoseshiftedinputsignalcausesashiftedoutputsignal.y(
7、t-t0)=T{x(t-t0)}(5)wheret0isthetimeshift.Naturallyoccurringlinearsystemsdonotexist,andstrictmathematicalmodelingofnonlinearsystemscanbecomplicatedandinmanycasesunrealistic.However,formostpracticalapplications,youcanstudynonl