Neural Turing Machines

Neural Turing Machines

ID:40947161

大?。?.29 MB

頁數(shù):26頁

時間:2019-08-11

Neural Turing Machines_第1頁
Neural Turing Machines_第2頁
Neural Turing Machines_第3頁
Neural Turing Machines_第4頁
Neural Turing Machines_第5頁
資源描述:

《Neural Turing Machines》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫

1、NeuralTuringMachinesAlexGravesgravesa@google.comGregWaynegregwayne@google.comIvoDanihelkadanihelka@google.comGoogleDeepMind,London,UKAbstractWeextendthecapabilitiesofneuralnetworksbycouplingthemtoexternalmemoryre-sources,whichtheycaninteractwithbyattentionalprocesses.Thecombinedsyst

2、emisanalogoustoaTuringMachineorVonNeumannarchitecturebutisdifferentiableend-to-end,allowingittobeef?cientlytrainedwithgradientdescent.Preliminaryresultsdemon-stratethatNeuralTuringMachinescaninfersimplealgorithmssuchascopying,sorting,andassociativerecallfrominputandoutputexamples.1I

3、ntroductionComputerprogramsmakeuseofthreefundamentalmechanisms:elementaryoperations(e.g.,arithmeticoperations),logical?owcontrol(branching),andexternalmemory,whicharXiv:1410.5401v2[cs.NE]10Dec2014canbewrittentoandreadfrominthecourseofcomputation(VonNeumann,1945).De-spiteitswide-rang

4、ingsuccessinmodellingcomplicateddata,modernmachinelearninghaslargelyneglectedtheuseoflogical?owcontrolandexternalmemory.Recurrentneuralnetworks(RNNs)standoutfromothermachinelearningmethodsfortheirabilitytolearnandcarryoutcomplicatedtransformationsofdataoverextendedperiodsoftime.More

5、over,itisknownthatRNNsareTuring-Complete(SiegelmannandSontag,1995),andthereforehavethecapacitytosimulatearbitraryprocedures,ifproperlywired.Yetwhatispossibleinprincipleisnotalwayswhatissimpleinpractice.Wethereforeenrichthecapabilitiesofstandardrecurrentnetworkstosimplifythesolutiono

6、falgorithmictasks.Thisenrichmentisprimarilyviaalarge,addressablememory,so,byanalogytoTuring’senrichmentof?nite-statemachinesbyanin?nitememorytape,we1dubourdevicea“NeuralTuringMachine”(NTM).UnlikeaTuringmachine,anNTMisadifferentiablecomputerthatcanbetrainedbygradientdescent,yieldinga

7、practicalmechanismforlearningprograms.Inhumancognition,theprocessthatsharesthemostsimilaritytoalgorithmicoperationisknownas“workingmemory.”Whilethemechanismsofworkingmemoryremainsome-whatobscureatthelevelofneurophysiology,theverbalde?nitionisunderstoodtomeanacapacityforshort-termsto

8、rageofinformationan

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。