3、lG?Sn),whereWeylisthe0n02n2nWeylalgebraon2ngenerators.Thatis,theBrylinskispectralsequencedegeneratesinthiscase.Intheellipticcase,thisyieldsthezerothHochschildhomologyofsymmetricpowersoftheellipticalgebraswiththreegeneratorsmodulotheircenter,Aγ,forallbutcou
4、ntablymanyparametersγintheellipticcurve.Contents1.Introduction11.1.Mainresult11.2.HochschildhomologyofdeformationsandAlev’sconjecture31.3.GeneralsymmetricproductsandPoisson-invariantfunctionals51.4.AC?-equivariantvectorbundleonP152.ProofofTheorem1.4.1783.P
5、roofofTheorem1.1.13whenXisnotoftypeAm?1114.ProofofTheorem1.1.13intheAm?1case135.ProofofTheorems1.2.1and1.2.2andCorollary1.2.3156.Acknowledgements16References16arXiv:0907.1715v1[math.SG]10Jul20091.Introduction1.1.Mainresult.Leta,b,cbepositiveintegers,andequ
6、ipC[x,y,z]withaweightgradinginwhich
7、x
8、=a,
9、y
10、=b,and
11、z
12、=c.Inthispaper,weareinterestedinsurfacesX?C3withanisolatedsingularityattheorigin,cutoutbyapolynomialQ(x,y,z)=0,whichisweighted-homogeneousofdegreed.Suchsurfaceswere?rststudiedsystematicallybySaito[Sai87]
13、.Forconvenience,wealsoassumethata≤b≤c.ThesurfaceXisequippedwithastandardPoissonbracket,givenbythebivector???(1.1.1)π:=(∧∧)y(dQ),?x?y?zDate:July9,2009.1whereyisthenaturalcontractionoperation,whichinthiscaseproducesabivectorfromatrivectorandaone-form.Theabov
14、ebivectoris,moreover,weight-homogeneousofdegreeκ:=d?(a+b+c),andisaPoissonbivector(i.e.,{π,π}=0,where{,}istheSchouten-Nijenhuisbracket).HenceitproducesaPoissonbracketofdegreeκ.Inparticular,whenκ<0,XhasaKleinia