Nonlinear_Functional_Analysis

Nonlinear_Functional_Analysis

ID:41423438

大?。?29.61 KB

頁數(shù):49頁

時間:2019-08-24

Nonlinear_Functional_Analysis_第1頁
Nonlinear_Functional_Analysis_第2頁
Nonlinear_Functional_Analysis_第3頁
Nonlinear_Functional_Analysis_第4頁
Nonlinear_Functional_Analysis_第5頁
資源描述:

《Nonlinear_Functional_Analysis》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、LectureNotesNonlinearFunctionalAnalysis2Chapter1Lesson11.1WhatcanandcannotbedonewithLi-nearFunctionalAnalysisInlastsemesterscourse,wehavestudiedvariouspropertiesofBanachSpacesandHilbertSpacesandbrie ydiscussedanapplicationtolineardi erentialequationsviaSobolevspacesinparticular.Wew

2、illnowviewthattopicincloserdetail.Theorem1.1.1.(Rieszrepresentationtheorem)LetHbeaHilbertspace,withaninnerproducth;i.LetL:H!Rbealinearboundedoperator.Thenthereexistsauniquey2HsuchthatL(x)=hx;yiforallx2HLemma1.1.2.(Cauchy-Schwarzinequality)LetHbeaHilbertspacewithinnerproducth;ia

3、ndnormkk.Thenforallx,y2Hjhx;yijkxkkykLetn2NandRn.De nition1.1.3.L2()isthespaceofallfunctionsf:!Rsuchthatthenorm012Zkfk:=@f(x)2dxA234Lesson1is nite.Letf,g2L2().L2()isaHilbertspacewithrespecttotheinnerproductZhf;gi2:=f(x)g(x)dxDe nition1.1.4.LetC1()bethespaceofallfunctionsf:!Rthat

4、0arein nitelydi erentiableandforwhichf(n)(x)=0forx2@andn2N.Letf,g2C1andde neaninnerproductonC1through00Zhf;gi0;1=(f(x)g(x)+rf(x)rg(x))dxThentheSobolevspaceH1()isthecompletionofthespaceC1()with001respecttothenormkk:=h;i20;10;1Question:Whydowede netheSobolevspaceH1()?0Answer:Wewi

5、llbeginansweringthisquestionbylookingatthefollowingexample:Example1.1.5.ConsiderthefollowingDirichletproblem:Findafunctionu2C2()C()suchthat(