Mathematical Statistics with Applications, 7 edition ISM_Chapter08F

Mathematical Statistics with Applications, 7 edition ISM_Chapter08F

ID:42656864

大?。?03.75 KB

頁數(shù):22頁

時(shí)間:2019-09-19

Mathematical Statistics with Applications, 7 edition ISM_Chapter08F_第1頁
Mathematical Statistics with Applications, 7 edition ISM_Chapter08F_第2頁
Mathematical Statistics with Applications, 7 edition ISM_Chapter08F_第3頁
Mathematical Statistics with Applications, 7 edition ISM_Chapter08F_第4頁
Mathematical Statistics with Applications, 7 edition ISM_Chapter08F_第5頁
資源描述:

《Mathematical Statistics with Applications, 7 edition ISM_Chapter08F》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、Chapter8:Estimation8.1LetB=B(θ?).Then,2MSE(θ?)=E[](θ??θ)2=E[(θ??E(θ?)+B)2]=E?(θ??E(θ?))?+E(B2)+2B×E[]θ??E(θ?)????2=V(θ?)+B.8.2a.Theestimatorθ?isunbiasedifE(θ?)=θ.Thus,B(θ?)=0.b.E(θ?)=θ+5.8.3a.UsingDefinition8.3,B(θ?)=aθ+b–θ=(a–1)θ+b.*b.Letθ?=(θ??b)/a.8.4a.Theyareequal.b.MSE(θ?)>V(θ?).

2、**28.5a.NotethatE(θ?)=θandV(θ?)=V[(θ??b)/a]=V(θ?)/a.Then,**2MSE(θ?)=V(θ?)=V(θ?)/a.2b.NotethatMSE(θ?)=V(θ?)+B(θ?)=V(θ?)+[(a?1)θ+b].Asufficientlylargevalueof*awillforceMSE(θ?)MSE(θ?).Example:a=.5,b=0.8.6a.E(θ?)=aE(θ?)+(1?a)E(θ?

3、)=aθ+(1?a)θ=θ.312b.V(θ?)=a2V(θ?)+(1?a)2V(θ?)=a2σ2+(1?a)σ2,sinceitwasassumedthatθ?and312121θ?areindependent.TominimizeV(θ?),wecantakethefirstderivative(with23respecttoa),setitequaltozero,tofind2σ2a=.22σ+σ12(Oneshouldverifythatthesecondderivativetestshowsthatthisisindeedaminimum.)8.7Fol

4、lowingEx.8.6butwiththeconditionthatθ?andθ?arenotindependent,wefind12222V(θ?)=aσ+(1?a)σ+2a(1?a)c.312Usingthesamemethodw/derivatives,theminimumisfoundtobe2σ?c2a=.22σ+σ?2c12158Chapter8:Estimation159Instructor’sSolutionsManual8.8a.Notethatθ?1,θ?2,θ?3andθ?5aresimplelinearcombinationsofY1,Y

5、2,andY3.So,itiseasilyshownthatallfouroftheseestimatorsareunbiased.FromEx.6.81itwasshownthatθ?hasanexponentialdistributionwithmeanθ/3,sothisestimatorisbiased.4b.ItiseasilyshownthatV(θ?)=θ2,V(θ?)=θ2/2,V(θ?)=5θ2/9,andV(θ?)=θ2/9,so1235theestimatorθ?isunbiasedandhasthesmallestvariance.58.9

6、Thedensityisintheformoftheexponentialwithmeanθ+1.WeknowthatYisunbiasedforthemeanθ+1,soanunbiasedestimatorforθissimplyY–1.8.10a.ForthePoissondistribution,E(Y)=λandsofortherandomsample,E(Y)=λ.Thus,theestimatorλ?=Yisunbiased.2222b.TheresultfollowsfromE(Y)=λandE(Y)=V(Y)+λ=2λ,soE(C)=4λ+λ.2

7、2222c.SinceE(Y)=λandE(Y)=V(Y)+[E(Y)]=λ/n+λ=λ(1+1/n).Then,we2canconstructanunbiasedestimatorθ?=Y+Y(4?1/n).8.11Thethirdcentralmomentisdefinedas3332E[(Y?μ)]=E[(Y?3)]=E(Y)?9E(Y)+54.Usingtheunbiasedestimatesθ?andθ?,itcaneasilybeshownthatθ?–9θ?+54isan2332unbiasedestimator.8.12a.Fortheunifor

8、mdist

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。