資源描述:
《線性代數(shù)課后習題答案復旦大學出版社熊維玲》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫。
1、--第一章3.如果排列x1x2xn是奇排列,則排列xnxn1x1的奇偶性如何?解:排列xnxn1x1可以通過對排列x1x2xn經(jīng)過(n1)(n2)2n(n1)12故當n(n1)次鄰換得到,每一次鄰換都改變排列的奇偶性,為偶數(shù)時,排列xnxn1x1為奇排列,當n(n1)為奇數(shù)時,排列2xnxn1x1為偶排列。24.寫出4階行列式的展開式中含元素a13且?guī)ж撎柕捻?解:含元素a13的乘積項共有(1)ta13a22a31a44,(1)ta13a22a34a41,(1)ta13a21a32a44,(1)ta13a21a34a4
2、2,(1)ta13a24a32a41,(1)ta13a24a31a42六項,各項列標排列的逆序數(shù)分別為t(3214),(3241)4,(3124),(3142)3,(3421)5,3tt2ttt(3412)4,故所求為1a13a22a31a44,1a13a21a34a42,1a13a24a32a41。001002005.按照行列式的定義,求行列式的值.n1000000n解:根據(jù)行列式的定義,非零的乘積項只有(1)ta1,n1a2,n2an1,1ann,其中t[(n1)(n2)21n](n1)(n2)2,故行列式的值等于
3、:(n1)(n2)(1)2n!2xx126.根據(jù)行列式定義,分別寫出行列式1x11的展開式中含x4的項和含x3的項.32x1111x-----解:展開式含x4的乘積項為(1)ta11a22a33a44(1)02xxxx2x4含x3的乘積項為(1)ta12a21a33a44(1)1x1xxx3-----8.利用行列式的性質(zhì)計算下列行列式:1234111111112341r1102341r44r10121解:(1)3412r1(r2r3r4)103412r33r110012141234123r22r103211111111
4、1r43r201210121r3r2100040r4r31000411011(4)(4)16000440004214112411241(2)3121c1c21321r32r105620(第二行與第12322132035050620562r2r10562四行相同)a2abb2111ra2r111(3)2aab2br1r32aab2b0ba2b2a31111a2abb2r22ar10aba2b2a2111111(ba)(ba)012r3ar2(ba)2012(ab)30aba00ba1x111xx001100(4)11x1
5、1r3r411x11x211x11111x1r1r200xx00111111x1111x1111x11001100r4r1x20x11r4r3x20x11x4r2r1001100110011x000x123456789.若0x=0,求x.030045-----123415005678260015x4解:0轉(zhuǎn)置37x424(5x12)0x363500454835即有:4(5x12)0x12511.利用行列式按行或列展開的方法計算下列行列式:解:(2)1aa001a011aa0D4按第一行展開(1a)D3a(1)1201a
6、a011aa011a0011a(1a)D3a(1)(1)11D2(1a)D3aD2[一般地有Dn(1a)Dn1aDn2](1a)[(1a)D2aD1]aD2(1aa2)D2a(1a)D1,其中:D21aaa(1a)2a1aa2,D11a1a.帶入上式即可。11abcd12.設4階行列式D4cbda,求A14A24A34A44.dbcaabdcabc1解:顯然,行列式cbd1按第四列展開,即得A14A24A34A44。注意到該行列dbc1abd1式的第四列與第一列元素成比例,其值為0,故AAAA0.14243444x1x
7、2x3014.當、取何值時,齊次線性方程組x1x2x30x12x2x30有非零解?111120112解:當系數(shù)行列式D1100(1)00-----121121-----時,齊次線性方程組有非零解,于是要求1或0-----B15.計算下列行列式:1a111111101a11111a21011a21(加邊法)(1)111an0111ann1111111ai1111a100i0a100110a20倍??第n1列00a2(第二列的a10100an000an的1倍都加到第一列)按第一列展開(1n1)a1a2anani1ai(2)
8、xy000xy0y000xy000x0xy0Dn按第一列展開xn1y(1)000xy00x00yy000xxn(1)n1yn12221222222222202222322232c1c20232展開(3)1222n022n22n1221222132rn1r10122(n2)!212r2r100n2-----n-----an(a1)n