資源描述:
《管路計(jì)算例題》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、管路計(jì)算例題在進(jìn)行管路的工藝計(jì)算時(shí),首先要從工藝流程圖中抽象出流程系統(tǒng)并予以簡(jiǎn)化,使得便于計(jì)算。管路的型式各種各樣,但是大致可分為簡(jiǎn)單管路和復(fù)雜管路。1簡(jiǎn)單管路和復(fù)雜管路的特點(diǎn)與常見問題1.1簡(jiǎn)單管路由一種管徑或幾種管徑組成而沒有支管的管路稱為簡(jiǎn)單管路。1)特點(diǎn):a穩(wěn)定流動(dòng)通過各管段的質(zhì)量流量不變,對(duì)不可壓縮流體則體積流量也不變;b整個(gè)管路的阻力損失為各段管路損失之和。2)常見的實(shí)際問題a已知管徑、管長(包括所有管件的當(dāng)量長度)和流量,求輸送所需總壓頭或輸送機(jī)械的功率(通常對(duì)于較長的管路,局部阻力所占的比例
2、很??;相反,對(duì)于較短的管路,局部阻力常比較大)。;b已知輸送系統(tǒng)可提供的總壓頭,求已定管路的輸送量或輸送一定量的管徑。1.2復(fù)雜管路典型的復(fù)雜管路有分支管路、匯合管路和并聯(lián)管路。1)特點(diǎn)a總管流量等于各支管流量之和;b對(duì)任一支管而言,分支前及分支后的總壓頭皆相等,據(jù)此可建立支管間的機(jī)械能衡算式,從而定出各支管的流量分配。2)常見的問題a已知管路布置和輸送任務(wù),求輸送所需的總壓頭或功率;b已知管路布置和提供的壓頭,求流量的分配;或已知流量分配求管徑的大小。2簡(jiǎn)單管路和復(fù)雜管路的計(jì)算2.1簡(jiǎn)單管路計(jì)算當(dāng)局部阻力
3、損失占總阻力損失的5-10%時(shí),計(jì)算中可忽略不計(jì);或者在計(jì)算中以沿程損失的某一百分?jǐn)?shù)表示;但是也可以將局部損失轉(zhuǎn)變?yōu)楫?dāng)量長度,與直管長度一起作為進(jìn)行阻力損失計(jì)算的總管長。如圖1所示,柏努利方程可寫成:H=u2+λl+le×CHAB圖1簡(jiǎn)單管路u22gd2g式中:u——管內(nèi)流速,m/s;le——局部阻力的當(dāng)量長度,m;l——直管長度,m。如果動(dòng)壓頭u2/2g與H比較起來很小,可以略去不計(jì),則上式可簡(jiǎn)化成H=λl+le×u2d2g從上式可看出,全部壓頭H僅消耗在克服在沿程阻力,H=Σhf。在計(jì)算中有三種情況:1
4、)已知管徑d、流量及管長l,求沿程阻力(見例1);2)已知管徑d、管長l及壓頭H,求流量V(見例2、例3);3)已知管長l、流量V及壓頭H,求管徑d(見例4);124)管路串聯(lián)見例5、例6,例6中還含有泵電機(jī)的功率計(jì)算。例1(1)5℃的水,以0.47m3/min的流量,經(jīng)過內(nèi)徑為10cm,總長為300m的水平鐵管。求沿程損失解管內(nèi)流速u=V=0.47=1m/sπd260×π×(0.1)244雷諾數(shù)ReRe=duρ=0.1×1×1000×1000=71430μ1.4查得λ=0.023,于是H為H=Σhf=λl
5、+le×u2=0.023×300×12=3.25mH2Od2g2×9.8×0.1例2(1)15℃、20%糖溶液流過內(nèi)徑10cm的鐵管,總長為150m,設(shè)自第一截面流至第二截面時(shí),位頭升高5m,而可用的壓力為12mH2O。已知15℃時(shí),μ=0.02275P,γ=1,081kg/m3。求流量解因?yàn)榱髁课粗?,需用試差法。先設(shè):V=0.020m3/s,則:u=V=0.020=2.55m/sπd2π×(0.1)244Re=duρ=0.10×2.55×1081×1000=121000μ2.275查得λ=0.021H=λ
6、l×u2=0.021×150×2.552=10.4mH2Od2g0.1×2×9.81由題示知,可用于克服阻力的壓頭僅為7m,所以所設(shè)流量太大,再設(shè)。又設(shè):V=0.015m3/s,則:u=1.91m/sRe=duρ/μ=91000查得λ=0.022于是H=λl×u2=0.022×150×1.912=6.13mH2Od2g0.1×2×9.81所設(shè)流量又太小,如此逐漸改變流量,最后求得正確的流量為0.0160m3/s。例3(2)密度為950kg/m3、粘度為1.24mPa·s的料液從高位槽送入塔中,高位槽內(nèi)的液面
7、維持恒定,并高于塔的進(jìn)料口4.5m,塔內(nèi)表壓強(qiáng)為3.82×103Pa。送液管道的直徑例1-21附圖1為Φ45×2.5mm,長為35m(包括管件及閥門的當(dāng)量長度,但不包括進(jìn)、出口損失),管壁的絕對(duì)粗糙度為0.2mm。求:輸液量Vs(m3/h)圖2例3附圖12解:以高位槽液面為上游1-1’截面,輸液管出口內(nèi)測(cè)2-2’為下游截面,并以截面2-2’的中心線為基準(zhǔn)水平面。在兩截面間列伯努利方程式:gZ1+u12+p1=gZ2+u22+p2+Σhf2ρ2ρ式中Z1=4.5mZ2=0u1≈0u2=up1=0(表壓)p2=
8、3.82×103Pa(表壓)Σhf,=(λl+Σle+ζc)u2=(λ35+0.5)u2db20.042將以上各式代入伯努利方程式,并整理得出管內(nèi)料液的流速為u=[2(9.81×4.5-3.82×103)]1/2=()1/2(a)95080.25λ35+1.5875λ+1.50.04而λ=f(Re,ε/d)=Φ(u)(b)式(a)和式(b)中,雖然只有兩個(gè)未知數(shù)λ與u,但是不能對(duì)u進(jìn)行求解。由于式(b)的具體函數(shù)