資源描述:
《化工原理習題解答(陳敏恒)1.pdf》由會員上傳分享,免費在線閱讀,更多相關內容在行業(yè)資料-天天文庫。
1、解題思路:331.已知:pa=101.3kPa,ρ=1000kg/m,ρi=13600kg/m,R=120mm,H=1.2m。求:PA(絕)(Pa),PA(表)(Pa)解題思路:以1-2-3為等壓面,列靜力學方程:PA=P1+ρg(H-R)P1=P2=P3P3=Pa+ρiRg∴PA=Pa+ρiRg+ρ(H-R)gPA(表)=PA(絕)-pa332.已知:R=130mm,h=20cm,D=2m,ρ=980kg/m,ρi=13600kg/m。管道中空氣緩慢流動。求:貯槽內液體的儲存量W。解題思路:(1)管道內空氣緩慢鼓泡u
2、=0,可用靜力學原理求解。(2)空氣的ρ很小,忽略空氣柱的影響。Hρg=Rρig12W=πD·(H+h)ρ433.已知:T=20℃(苯),ρ=880kg/m,H=9m,d=500mm,h=600mm。求:(1)人孔蓋受力F(N)(2)槽底壓強P(Pa)解題思路:(1)由于人孔蓋對中心水平線有對稱性,且靜壓強隨深度作線性變化,所以可以孔蓋中心處的壓強對全面積求積得F。112F=P·A=ρg(H-h)·πd4(2)P=ρgH334.已知:HS=500mm,ρ油=780kg/m,ρ水=1000kg/m求:H(m)。解題思路:
3、假定:由于液體流動速度緩慢,可作靜力學處理,HSρ油g=Hρgρ油∴H=H?Sρ335.已知:ρi=13600kg/m,ρ=1000kg/m,h1=1.2m,h2=0.3m,h3=1.3m,h4=0.25m。求:ΔPAB(Pa)解題思路:PA-PC=(h1-h2)(ρi–ρ)gPC-PB=(h3-h4)(ρi–ρ)g∴PA-PB=(h1-h2+h3-h4)(ρi–ρ)g又ZA=ZB∴ΔPAB=ΔPAB6.已知:D=9m,m=10t求:P,Δh。2解題思路:設大氣壓為P0,由題設條件知可用靜力學求解。π2D(P?P)=m
4、g04mgP=+P0π2D4P=P+?h?ρg07.已知:P(真)=82kPa,Pa=100kPa求:P(絕),H解題思路:P(絕)=Pa-P(真)P(絕)+ρgH=Pa8.已知:ρA=ρB=ρ,指示劑密度為ρi求:(1)R與H之關系(2)PA與PB之關系3解題思路:(1)由靜力學可知:PA-PB=R(ρi–ρ)g=H(ρi–ρ)g(2)∵ρi>ρ∴PA-PB=H(ρi–ρ)g>0即PA>PBPA+ZAρg>PB+ZBρgPA>PB+(ZB-ZA)ρg>PB9.已知:如圖所示:2d求證:P=P?hg(ρ?ρ)?hgρB
5、a2112D解題思路:作1-1等壓面,由靜力學方程得P+hρg=P+?hρg+hρg(1)a1B12π2π2∵?h?D=h?d442d∴?h=h?代入(1)式2D2d得P+hρg=P+h?ρg+hρga1B212D10.已知:dp=ρ(Xdx+Ydy+Zdz),Ph=0=Pa,T=const,大氣為理想氣體。求:大氣壓與海拔高度h之間的關系。解:大氣層僅考慮重力,所以X=0,Y=0,Z=-g,dz=dh∴dp=-ρgdhpM又理想氣體ρ=RT其中M為氣體平均分子量,R為氣體通用常數(shù)。4311.已知:鋼管φ114×4.5
6、mmP=2MPa(絕),T=20℃,空氣流量qV0=6300m/h(標準狀態(tài)),求:u、qm、G解題思路:(1)Pqv=nRTTP10∴q=q××V1V0TP01qV1∴u=12πd4pM(2)ρ=RT∴G=u?ρ29(3)ρ=022.4q=ρ?qm0V03312.已知:qV=60m/h,dA=100mm,dB=200mm,hAB=0.2m,ρi=1630kg/m,3ρ=1000kg/m,求:(1)指示劑哪側高,R=?(2)擴大管道改為水平放置,壓差計的讀數(shù)有何變化?解題思路:(1)取A、B兩個管截面列柏努利方程22P
7、uPuAABB得+=+ρ2ρ2ρ22∴P=P?P=(u?u)ABABBA2ΔPBA=Rg(ρi-ρ)(2)若改為水平放置后,由于uA、uB不變,則ΔPBA也不變,由ΔPBA=Rg(ρi-ρ)R值也不變,即壓差計指示的是總勢能差。3313.已知:d=200mm,R=25mm,ρi=1000kg/m,ρ=1.2kg/m。53求:qV(m/h)解題思路:列1-2兩截面伯努利方程22PuPu1122+gz+=+gz+12ρ2ρ2P1=Pa,z1=z2,u1=0ρ2∴P?P=ua222由U形壓差計,Pa-P2=Rg(ρi-ρ)(
8、忽略空氣柱)12∴q=u?πdV22414.已知:H=0.8m,h=0.6m,D=0.6m,d=10mm,CO=0.62,求:液面下降0.5m所需的時間。解題思路:列1-2截面伯努利方程,小孔中心處為基準面22PuPu1122+gz+=+gz+12ρ2ρ2P1=P2=Pa,z2=0,z1=H-h=0.8-0.6=0.2m,u1=0