資源描述:
《基于數(shù)據(jù)挖掘的金融時間序列預(yù)測研究與應(yīng)用.pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。
1、AbstractAbstractWontheNobelPrizeineconomicsin1997,RobertMertonbelievethatthetimevalueofmoney,assetpricingandriskmanagementconstitutesthecornerstoneofmodernfinancialtheory,howintheuncertainenvironmentforinter-temporaloptimalallocationofresourcesisthemostimportantproblem.Withthedevelopmentofco
2、mputersoftware,avarietyofsoftwareandapplicationsarewidelyused,andcontinuedintothebusiness,socialproductionandlife,etc.Financeisanextremelyimportantpartofsocialeconomy.Onfinancialdatafordatamining,itisinalargenumberoftransient,nonlinearandhighsignal-to-noiseratioofuncertainfinancialdatamining
3、valuableinformation.Dataminingtechnologyinthefinancialsectorgraduallyrise.Thetraditionaldataminingtechniquesinthetreatmentofthecommondataperformedwell,buttheprocessingofinstabilityoffinancialtimeseriestoshowsomelimitations.Thusimprovingexistingdataminingtechnologyintheapplicationresearchoffi
4、nancialtimeseriesisparticularlyimportant.Inordertosolvethisproblem,thispaperbasedontheclusteringindataminingresearchasthebreakthroughpoint,themainworkisasfollows:First,inviewofDBSCANclusteringalgorithmcannotdealwiththedatasetsofvarieddensities,combinedwiththeinitialpointofoptimizationandpara
5、meteradaptivemethodforimprovingDBSCANalgorithm.Thispaperproposesanewdatasetcancopewithchangedensityspatialclusteringalgorithmbasedondensity(OS-DBSCAN).Theexperimentalresultsshowthatthenewimproveddensitybasedspatialclusteringalgorithmcandealwithvarieddensitydatasetsforclustering,andaftergivin
6、gtheinitialparametersaccordingtothecharacteristicsandattributesofdatasetsitsownparameteradaptive,andcomparedwiththetraditionalDBSCANalgorithm,thedensityofinitialpointoptimizationandparameteradaptivespatialclusteringalgorithmcanimprovethequalityofclustering.Secondly,inviewofthefinancialtimese
7、riespredictionbasedondataminingproblems,combinedwiththeproposedOS-DBSCANclusteringalgorithmandSVRregressionpredictionalgorithmbasedonparticleswarmoptimization,thispaperproposesahybridalgorithmtocopewithunsteady,nonlinearandhighsignal-to-noiseratioo