支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究

支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究

ID:517911

大小:25.00 KB

頁數(shù):5頁

時(shí)間:2017-08-21

支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究_第1頁
支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究_第2頁
支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究_第3頁
支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究_第4頁
支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究_第5頁
資源描述:

《支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、支持向量機(jī)在數(shù)據(jù)挖掘中的應(yīng)用研究-結(jié)構(gòu)綜合資料摘要:支持向量機(jī)(SupportVectorMachine,SVM)是數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)中的一個(gè)很有效的工具。結(jié)合支持向量機(jī)在數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)中的應(yīng)用,介紹了支持向量機(jī)的基本原理,發(fā)展方向及其研究熱點(diǎn)。關(guān)鍵詞:支持向量機(jī);數(shù)據(jù)挖掘;機(jī)器學(xué)習(xí)1SVM的提出和基本思想支持向量機(jī)是Vapnik等人提出的,在解決小樣本、非線性及高維模式識(shí)別問題中表現(xiàn)出許多特有的優(yōu)勢,已應(yīng)用于手寫體識(shí)別、三維目標(biāo)識(shí)別、人臉識(shí)別、文本圖像分類等實(shí)際問題中,性能優(yōu)于已有的學(xué)習(xí)方法,表現(xiàn)出良好的學(xué)習(xí)能力。它是從線性可分情況下的線性分類面發(fā)展而來的,接著利用核函數(shù)很好

2、的解決了非線性可分情況。2支持向量機(jī)的幾個(gè)發(fā)展(1)模糊支持向量機(jī),引入樣本對類別的隸屬度函數(shù),這樣每個(gè)樣本對于類別的影響是不同的,這種理論的應(yīng)用提高了SVM的抗噪聲的能力,尤其適合在未能完全揭示輸入樣本特性的情況下。(2)最小二乘支持向量機(jī)。這種方法是在1999年提出,經(jīng)過這幾年的發(fā)展,已經(jīng)應(yīng)用要很多相關(guān)的領(lǐng)域。研究的問題已經(jīng)推廣到:對于大規(guī)模數(shù)據(jù)集的處理;處理數(shù)據(jù)的魯棒性;參數(shù)調(diào)節(jié)和選擇問題;訓(xùn)練和仿真。(3)加權(quán)支持向量機(jī)(有偏樣本的加權(quán),有偏風(fēng)險(xiǎn)加權(quán))。(4)主動(dòng)學(xué)習(xí)的支持向量機(jī)。主動(dòng)學(xué)習(xí)在學(xué)習(xí)過程中可以根據(jù)學(xué)習(xí)進(jìn)程,選擇最有利于分類器性能的樣本來進(jìn)一步訓(xùn)練分類器,特能有效

3、地減少評(píng)價(jià)樣本的數(shù)量。(5)粗糙集與支持向量機(jī)的結(jié)合。首先利用粗糙集理論對數(shù)據(jù)的屬性進(jìn)行約簡,能在某種程度上減少支持向量機(jī)求解計(jì)算量。(6)基于決策樹的支持向量機(jī)。對于多類問題,采用二岔樹將藥分類的樣本集構(gòu)造出一系列的兩類問題,每個(gè)兩類構(gòu)造一個(gè)SVM。(7)分級(jí)聚類的支持向量機(jī)。基于分級(jí)聚類和決策樹思想構(gòu)建多類svm,使用分級(jí)聚類的方法,可以先把n-1個(gè)距離較近的類別結(jié)合起來,暫時(shí)看作一類,把剩下的一類作為單獨(dú)的一類,用svm分類,分類后的下一步不再考慮這單獨(dú)的一類,而只研究所合并的n-1類,再依次下去。(8)算法上的提高。Vapnik在1995年提出了一種稱為“chunking”

4、的塊算法,即如果刪除矩陣中對應(yīng)Lagrange乘數(shù)為0的行和列,將不會(huì)影響最終結(jié)果。Osuna提出了一種分解算法,應(yīng)用于人臉識(shí)別領(lǐng)域。Joachims在1998年將Osuna提出的分解策略推廣到解決大型SVM學(xué)習(xí)的算法。Platt于1998年提出了序貫最小優(yōu)化每次的工作集中只有2個(gè)樣本。(9)核函數(shù)的構(gòu)造和參數(shù)的選擇理論研究?;诟鱾€(gè)不同的應(yīng)用領(lǐng)域,可以構(gòu)造不同的核函數(shù),能夠或多或少的引入領(lǐng)域知識(shí)?,F(xiàn)在核函數(shù)廣泛應(yīng)用的類型有:多項(xiàng)式逼近、貝葉斯分類器、徑向機(jī)函數(shù)、多層感知器。參數(shù)的選擇現(xiàn)在利用交叉驗(yàn)證的方法來確認(rèn)。(10)支持向量機(jī)從兩類問題向多類問題的推廣。Weston在1998

5、年提出的多類算法為代表。在經(jīng)典svm理論的基礎(chǔ)上,直接在目標(biāo)函數(shù)上進(jìn)行改進(jìn),重新構(gòu)造多值分類模型,建立k分類支持向量機(jī)。通過sv方法對新模型的目標(biāo)函數(shù)進(jìn)行優(yōu)化,實(shí)現(xiàn)多值分類。一對多(one-against-rest)——Vapnik提出的,k類——k個(gè)分類器,第m個(gè)分類器將第m類與其余的類分開,也就是說將第m類重新標(biāo)號(hào)為1,其他類標(biāo)號(hào)為-1。完成這個(gè)過程需要計(jì)算k個(gè)二次規(guī)劃,根據(jù)標(biāo)號(hào)將每個(gè)樣本分開,最后輸出的是兩類分類器輸出為最大的那一類。不足:容易產(chǎn)生屬于多類別的點(diǎn)(多個(gè)1)和沒有被分類的點(diǎn)(標(biāo)號(hào)均為-1)——不對,訓(xùn)練樣本數(shù)據(jù)大,訓(xùn)練困難,推廣誤差無界。層(數(shù)分類方法),是對一

6、對一方法的改進(jìn),將k個(gè)分類合并為兩個(gè)大類,每個(gè)大類里面再分成兩個(gè)子類,如此下去,直到最基本的k個(gè)分類,這樣形成不同的層次,每個(gè)層次都用svm來進(jìn)行分類——1對r-1法,構(gòu)建k-1個(gè)分類器,不存在拒絕分類區(qū)。3主要研究熱點(diǎn)從上面的發(fā)展中,我們可以總結(jié)出,目前支持向量機(jī)有著幾方面的研究熱點(diǎn):核函數(shù)的構(gòu)造和參數(shù)的選擇;支持向量機(jī)從兩類問題向多類問題的推廣;更多的應(yīng)用領(lǐng)域的推廣;與目前其它機(jī)器學(xué)習(xí)方法的融合;與數(shù)據(jù)預(yù)處理(樣本的重要度、屬性的重要度、特征選擇等)方法的結(jié)合。參考文獻(xiàn)[1]張學(xué)工.統(tǒng)計(jì)學(xué)習(xí)理論的本質(zhì)[M].北京:清華大學(xué)出版社,2000.[2]NelloCristiani

7、ni,JohnShawe-Taylor.支持向量機(jī)導(dǎo)論[M].北京:電子工業(yè)出版社,2004.

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。