資源描述:
《考慮靜態(tài)電壓穩(wěn)定性的多目標(biāo)無功優(yōu)化.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、第23卷第1期電力系統(tǒng)及其自動(dòng)化學(xué)報(bào)Vo1.23NO.12011年2月ProceedingsoftheCSU—EPSAFeb.2O11考慮靜態(tài)電壓穩(wěn)定性的多目標(biāo)無功優(yōu)化楊曉萍,張強(qiáng),薛斌,王磊。(1.西安理工大學(xué)水利水電學(xué)院,西安710048;2.佛山電力設(shè)計(jì)院有限公司,佛山528200;3.西北電力設(shè)計(jì)院,西安710075)摘要:針對遺傳算法容易出現(xiàn)早熟、局部尋優(yōu)能力較差和收斂速度緩慢的問題,該文用模擬退火思想對適應(yīng)度函數(shù)進(jìn)行改善,用自適應(yīng)算法對遺傳算法的交叉、變異策略進(jìn)行改進(jìn),采用精英保留策略,變異操作作用尾部占優(yōu)原則,并把
2、基于廣義Tellegen定理的電壓穩(wěn)定裕度指標(biāo)最小作為無功優(yōu)化的目標(biāo)函數(shù)之一,以改善電力系統(tǒng)的靜態(tài)電壓穩(wěn)定性。用IEEE14、IEEE30和IEEE57節(jié)點(diǎn)系統(tǒng)進(jìn)行驗(yàn)算,將優(yōu)化結(jié)果與其他算法進(jìn)行比較,表明本文算法優(yōu)化結(jié)果更優(yōu),相對于簡單遺傳算法有更好地收斂性,加速了算法的收斂速度,在降低網(wǎng)損的同時(shí)能夠有效提高負(fù)荷節(jié)點(diǎn)的電壓穩(wěn)定裕度。關(guān)鍵詞:電力系統(tǒng);無功優(yōu)化;靜態(tài)電壓穩(wěn)定;裕度指標(biāo);改進(jìn)遺傳算法中圖分類號(hào):TM714.3文獻(xiàn)標(biāo)志碼:A文章編號(hào):1003—8930(20l1)01—013807Multi—objectiveReac
3、tivePowerOptimizationwithStaticValtageStabilityYANGXiao—ping,ZHANGQiang,XUEBin,WANGLei。(1.FacultyofWaterResourcesandHydraulicPower,XianUniversityofTechnology,Xian710048,China;2.FoshanElectricPowerDesignInstituteCompanyLimited,F(xiàn)oshan528200,China;3.NorthwestElectricPow
4、erDesignInstitute,Xian710075,China)Abstract:Thegeneticalgorithmhasthreedisadvantages:earlymaturity,poorabilityoflocaloptimization,andslowconvergencerate.Inordertoovercometheseproblems,somemodifiedmethodsofreactivepoweroptimi—zationtOimprovethestaticvoltagestabilityof
5、powersystemwereproposed.Inthispaper,fitnessfunctionwasmodifiedbyusingsimulatedannealingtheory.Geneticalgorithmcrossoverandmutationstrategywereim—provedbyusingadaptivealgorithm.Thetacticsofelitestokeepandmutationoperationusedtail—prevailingprinciplewereadopted.Themini
6、mizationofvoltagestabilitymarginindexbasedonthegeneralizedTellegenstheoremwastakenasoneofobjectivefunctions.ComparedwiththeothermethodsonIEEE14一bus,IEEE30一busandIEEE57一bussystem,theoptimizationresultsshowthattheproposedalgorithmoptimizationhasbetterconvergencepropert
7、ythansimplegeneticalgorithm,whichacceleratedthealgorithmconvergencespeed,andef—fectivelyimprovethevoltagestabilitymarginofloadbuseswhilereducingthepowerloss.Keywords:powersystem;reactivepoweroptimization;staticvoltagestability;marginindex;modifiedgeneticalgorithm電力系統(tǒng)
8、無功優(yōu)化是以滿足系統(tǒng)負(fù)荷要求和標(biāo)的綜合優(yōu)化問題。傳統(tǒng)的優(yōu)化算法如線性規(guī)劃各種運(yùn)行約束為前提,通過優(yōu)化計(jì)算確定發(fā)電機(jī)的法、非線性規(guī)劃法、靈敏度法。等容易陷入局端電壓、有載變壓器的分接頭檔位和無功補(bǔ)償設(shè)備部最優(yōu)解,因此,許多基于人工智能的新方法,如專的容量等,達(dá)到有