data+science+in+talkingdata-

data+science+in+talkingdata-

ID:5297096

大?。?.95 MB

頁數(shù):29頁

時間:2017-12-07

data+science+in+talkingdata-_第1頁
data+science+in+talkingdata-_第2頁
data+science+in+talkingdata-_第3頁
data+science+in+talkingdata-_第4頁
data+science+in+talkingdata-_第5頁
資源描述:

《data+science+in+talkingdata-》由會員上傳分享,免費在線閱讀,更多相關內容在行業(yè)資料-天天文庫。

1、DataScienceinTalkingData主講人:TalkingData首席數(shù)據(jù)科學家張夏天DatainTalkingDataCHINA’SLARGESTINDEPENDENTMOBILEDATAPLATFORMEstablishedin2011HeadquartersinBeijingThreeroundsofVCfinancing650mln+100,000+30mln200mln+MonthlyActiveAppswithSDKDailyMobileAdMonthlyDeviceUniqueDevicesIntegratedClicks:China

2、’sPanelonAppInstallLargestMobileAd&UsageTrackingPlatformChallengesinTalkingDataBigDataVariousApplications?Volume?Finance?Velocity?Retail?Variety?RealEstate?Variability?…?Veracity?UnreadableDataDataScienceinTalkingDataLearningonBigDataImproveEfficiencyofDataScience?Fregata?SmartDataL

3、ab?Myna?AutoModel?EventDataMiningApplicationsOpen?Lookalike?BusinessPartners?RecommenderSystem?AcademicPartners?DemographicCognition?Education?ChurnAlert?……?ContextAwareness?IndoorPositioning?……LearningonBigDataFregata(OpenSource)?LargescalemachinelearninglibraryonSparkMyna(OpenSour

4、ce)?TheframeworkofcontextawarenessofAndriodEventDataMining?Eventdatamanagementsolution?Eventdata&unreadabledataminingTheRoadToHighPerformanceMLAlgorithms:Fregata‘sApproachRemoveHypeParameters?GreedystepaveragingoptimizationmethodLowCostParallelizationMethod?Modelaveragingmethod?Conv

5、ergencewithonlyonescanofthewholedataCompressModelSizes?Expandthemodelcapabilityonasinglenodebyafactorof1000GreedyStepAveraginghttps://arxiv.org/abs/1611.03608ConvergenceofGSAGSAvsSGDGSAvsAdadeltaGSAvsSCSGParallelizationGradientAveraging/ηHighcostontrainingstage?"=?"$%?)??,(?"$%)?,01

6、ModelAveraging/1?"=)?"$%,,?,01SuitableforSparkScoreAveraging81Highcostonscoringstage?5=)?5,7?701ConvergenceofModelAveragingThemodelaveragingmethodcanapproachtheoptimalmodelforlinearproblemswithaverylargeamountoftrainingdata.Fregatavs.MLLib:LogisticRegressionFregatavs.MLLib:Softmaxon

7、MNISTModelCompressionDiscretizeparametervaluesbyK-Means?Typically,discretizeparametervaluesto128buckets.?Thenwecanuse7bitstoencodeabucket,andbuildamappingindextodiscretizeparametervalues.CompresstheresultingmodelbitmapbyRoaringBitmapsModelCompression:AccuracyCompressedModelOriginalM

8、odel(128buckets)Dat

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。
相關文章
更多
相關標簽