資源描述:
《面向?qū)ο蟮母叻直媛蔬b感影像城區(qū)建筑物分級提取方法》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、第39卷第1期測繪學(xué)報Vol.39,No.12010年2月ActaGeodaeticaetCartographicaSinicaFeb.,2010文章編號:1001-1595(2010)01-0039-07面向?qū)ο蟮母叻直媛蔬b感影像城區(qū)建筑物分級提取方法1,21,21,21,21,2陶超,譚毅華,蔡華杰,杜博,田金文1.華中科技大學(xué)圖像識別與人工智能研究所,湖北武漢430074;2.華中科技大學(xué)多譜信息處理技術(shù)國家重點實驗室,湖北武漢430074Object-orientedMethodofHierarchicalUrbanBuildingExtractionfromHigh-
2、resolu-tionRemote-SensingImagery1,21,21,21,21,2TAOChao,TANYihua,CAIHuajie,DUBo,TIANJinwen1.InstituteofPatternRecognitionandArtificialIntelligence,HuazhongUniversityofScienceandTechnology,Wuhan430074,Ch-ina;2.TheStateKeyLaboratoryforMult-ispectraInformationProcessingTechnology,HuazhongUnivers
3、ityofScienceandTech-nology,Wuhan430074,ChinaAbstract:Anautomaticurbanbuildingextractionmethodforhigh-resolutionremote-sensingimagery,whichcom-binesbuildingsegmentationbasedonneighbortotalvariationswithobject-orientedanalysis,ispresentedinthispaper.Aimedatdifferentextractioncomplexityfromvari
4、ousbuildingsinthesegmentedimage,ahierarchicalbuildingextractionstrategywithmult-ifeaturefusionisadopted.Firstly,weextractsomerectanglebuildingswhichremainintactaftersegmentationthroughshapeanalysis.Secondly,inordertoensureeachcandidatebuildingtar-gettobeindependent,multidirectionalmorphologi
5、calroad-filteringalgorithmisdesignedwhichcanseparatebuildingsfromtheneighboringroadswithsimilarspectrum.Finally,wetaketheextractedbuildingsandtheexcludednon-buildingsassamplestoestablishprobabilitymodelrespectively,andBayesiandiscriminatingclassifierisusedformakingjudgmentoftheothercandidate
6、buildingobjectstogettheultimateextractionresult.Theexperimentalresultshaveshownthattheapproachisabletodetectbuildingswithdifferentstructureandspectralfeaturesinthesameimage.Theresultsofper-formanceevaluationalsosupporttherobustnessandprecisionoftheapproachdeveloped.Keywords:high-resolutionre
7、mote-sensingimagery;buildingextraction;objec-torientedmethod;morphology;Bayesianrule摘要:提出一種高空間分辨率遙感影像城區(qū)建筑物自動提取方法。該方法將面向?qū)ο蟮乃枷肴谌氲交卩徲蚩傋兎值慕ㄖ锓指罘椒ㄖ?并通過分析分割后不同類型建筑物提取的難易程度,提出一種多特征融合的建筑物對象分級提取策略:首先通過形狀分析檢測一部分分割完整的矩形建筑物目標(biāo),然后采用新提出的多方向形態(tài)學(xué)道路濾波算法將建筑物與鄰近光譜相似的道