2015年高考真題——理科數(shù)學(xué)(上海卷)_Word版含解析.doc

2015年高考真題——理科數(shù)學(xué)(上海卷)_Word版含解析.doc

ID:54953368

大小:964.00 KB

頁數(shù):9頁

時間:2020-04-24

2015年高考真題——理科數(shù)學(xué)(上海卷)_Word版含解析.doc_第1頁
2015年高考真題——理科數(shù)學(xué)(上海卷)_Word版含解析.doc_第2頁
2015年高考真題——理科數(shù)學(xué)(上海卷)_Word版含解析.doc_第3頁
2015年高考真題——理科數(shù)學(xué)(上海卷)_Word版含解析.doc_第4頁
2015年高考真題——理科數(shù)學(xué)(上海卷)_Word版含解析.doc_第5頁
資源描述:

《2015年高考真題——理科數(shù)學(xué)(上海卷)_Word版含解析.doc》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、1、設(shè)全集.若集合,,則.【答案】2、若復(fù)數(shù)滿足,其中為虛數(shù)單位,則.【答案】3、若線性方程組的增廣矩陣為、解為,則.【答案】4、若正三棱柱的所有棱長均為,且其體積為,則.5、拋物線()上的動點到焦點的距離的最小值為,則.【答案】6、若圓錐的側(cè)面積與過軸的截面面積之比為,則其母線與軸的夾角的大小為.【答案】7、方程的解為.【答案】8、在報名的名男教師和名女教師中,選取人參加義務(wù)獻血,要求男、女教師都有,則不同的選取方式的種數(shù)為(結(jié)果用數(shù)值表示).【答案】9、已知點和的橫坐標相同,的縱坐標是的縱坐標的倍,和的軌跡分別為雙曲

2、線和.若的漸近線方程為,則的漸近線方程為.【答案】910、設(shè)為,的反函數(shù),則的最大值為.【答案】11、在的展開式中,項的系數(shù)為(結(jié)果用數(shù)值表示).【答案】12、賭博有陷阱.某種賭博每局的規(guī)則是:賭客先在標記有,,,,的卡片中隨機摸取一張,將卡片上的數(shù)字作為其賭金(單位:元);隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的倍作為其獎金(單位:元).若隨機變量和分別表示賭客在一局賭博中的賭金和獎金,則(元).【答案】【解析】賭金的分布列為12345P所以獎金的分布列為1.42.84.25.6P所以913、已

3、知函數(shù).若存在,,,滿足,且(,),則的最小值為.【解析】因為,所以,因此要使得滿足條件的最小,須取即14、在銳角三角形中,,為邊上的點,與的面積分別為和.過作于,于,則.【解析】由題意得:,又,因為DEAF四點共圓,因此15、設(shè),,則“、中至少有一個數(shù)是虛數(shù)”是“是虛數(shù)”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分又非必要條件【答案】B16、已知點的坐標為,將繞坐標原點逆時針旋轉(zhuǎn)至,則點的縱坐標為()17、記方程①:,方程②:,方程③:,其中,,是正實數(shù).當,,成等比數(shù)列時,下列選項中,能推出方程

4、③無實根的是()A.方程①有實根,且②有實根B.方程①有實根,且②無實根C.方程①無實根,且②有實根D.方程①無實根,且②無實根【答案】B9【解析】當方程①有實根,且②無實根時,,從而即方程③:無實根,選B.而A,D由于不等式方向不一致,不可推;C推出③有實根20、(本題滿分14分)本題共有2小題,第小題滿分6分,第小題滿分8分如圖,,,三地有直道相通,千米,千米,千米.現(xiàn)甲、乙兩警員同時從地出發(fā)勻速前往地,經(jīng)過小時,他們之間的距離為(單位:千米).甲的路線是,速度為千米/小時,乙的路線是,速度為千米/小時.乙到達地后原

5、地等待.設(shè)時乙到達地.(1)求與的值;(2)已知警員的對講機的有效通話距離是千米.當時,求的表達式,并判斷在上得最大值是否超過?說明理由.【答案】(1),(2),不超過.(2)甲到達用時小時;乙到達用時小時,從到總用時小時.9當時,;當時,.所以.因為在上的最大值是,在上的最大值是,所以在上的最大值是,不超過.21、已知橢圓,過原點的兩條直線和分別于橢圓交于、和、,記得到的平行四邊形的面積為.(1)設(shè),,用、的坐標表示點到直線的距離,并證明;(2)設(shè)與的斜率之積為,求面積的值.【答案】(1)詳見解析(2)9由,,整理得.

6、22、已知數(shù)列與滿足,.(1)若,且,求數(shù)列的通項公式;(2)設(shè)的第項是最大項,即(),求證:數(shù)列的第項是最大項;(3)設(shè),(),求的取值范圍,使得有最大值與最小值,且.【答案】(1)(2)詳見解析(3)9因為,,所以,即.故的第項是最大項.解:(3)因為,所以,當時,.當時,,符合上式.所以.因為,所以,.①當時,由指數(shù)函數(shù)的單調(diào)性知,不存在最大、最小值;②當時,的最大值為,最小值為,而;③當時,由指數(shù)函數(shù)的單調(diào)性知,的最大值,最小值,由及,得.綜上,的取值范圍是.923、對于定義域為的函數(shù),若存在正常數(shù),使得是以為周

7、期的函數(shù),則稱為余弦周期函數(shù),且稱為其余弦周期.已知是以為余弦周期的余弦周期函數(shù),其值域為.設(shè)單調(diào)遞增,,.(1)驗證是以為周期的余弦周期函數(shù);(2)設(shè).證明對任意,存在,使得;(3)證明:“為方程在上得解”的充要條件是“為方程在上有解”,并證明對任意都有.【答案】(1)詳見解析(2)詳見解析(3)詳見解析(2)由于的值域為,所以對任意,都是一個函數(shù)值,即有,使得.若,則由單調(diào)遞增得到,與矛盾,所以.同理可證.故存在使得.(3)若為在上的解,則,且,,即為方程在上的解.同理,若為方程在上的解,則為該方程在上的解.以下證明

8、最后一部分結(jié)論.由(2)所證知存在,使得,,,,,.9而,故.類似地,當,,,時,有.結(jié)論成立.9

當前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。