資源描述:
《解析幾何專(zhuān)題復(fù)習(xí).doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、解析幾何單元易錯(cuò)題練習(xí)一.考試內(nèi)容:橢圓及其標(biāo)準(zhǔn)方程.橢圓的簡(jiǎn)單幾何性質(zhì).橢圓的參數(shù)方程.雙曲線及其標(biāo)準(zhǔn)方程.雙曲線的簡(jiǎn)單幾何性質(zhì).拋物線及其標(biāo)準(zhǔn)方程.拋物線的簡(jiǎn)單幾何性質(zhì).二.考試要求:掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡(jiǎn)單幾何性質(zhì),了解橢圓的參數(shù)方程.掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡(jiǎn)單幾何性質(zhì).掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡(jiǎn)單幾何性質(zhì).了解圓錐曲線的初步應(yīng)用.【注意】圓錐曲線是解析幾何的重點(diǎn),也是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,高考中主要出現(xiàn)三種類(lèi)型的試題:①考查圓錐曲線的概念與性質(zhì);②求曲線方程和軌跡;③關(guān)于直線與圓錐曲線的
2、位置關(guān)系的問(wèn)題.三.基礎(chǔ)知識(shí):橢圓及其標(biāo)準(zhǔn)方程橢圓的定義:橢圓的定義中,平面內(nèi)動(dòng)點(diǎn)與兩定點(diǎn)、的距離的和大于
3、
4、這個(gè)條件不可忽視.若這個(gè)距離之和小于
5、
6、,則這樣的點(diǎn)不存在;若距離之和等于
7、
8、,則動(dòng)點(diǎn)的軌跡是線段.2.橢圓的標(biāo)準(zhǔn)方程:(>>0),(>>0).3.橢圓的標(biāo)準(zhǔn)方程判別方法:判別焦點(diǎn)在哪個(gè)軸只要看分母的大?。喝绻?xiàng)的分母大于項(xiàng)的分母,則橢圓的焦點(diǎn)在x軸上,反之,焦點(diǎn)在y軸上.4.求橢圓的標(biāo)準(zhǔn)方程的方法:⑴正確判斷焦點(diǎn)的位置;⑵設(shè)出標(biāo)準(zhǔn)方程后,運(yùn)用待定系數(shù)法求解.橢圓的簡(jiǎn)單幾何性質(zhì)橢圓的幾何性質(zhì):設(shè)橢圓方程為(>>0).⑴范圍
9、:-a≤x≤a,-b≤x≤b,所以橢圓位于直線x=和y=所圍成的矩形里.⑵對(duì)稱(chēng)性:分別關(guān)于x軸、y軸成軸對(duì)稱(chēng),關(guān)于原點(diǎn)中心對(duì)稱(chēng).橢圓的對(duì)稱(chēng)中心叫做橢圓的中心.⑶頂點(diǎn):有四個(gè)(-a,0)、(a,0)(0,-b)、(0,b).線段、分別叫做橢圓的長(zhǎng)軸和短軸.它們的長(zhǎng)分別等于2a和2b,a和b分別叫做橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng).所以橢圓和它的對(duì)稱(chēng)軸有四個(gè)交點(diǎn),稱(chēng)為橢圓的頂點(diǎn).⑷離心率:橢圓的焦距與長(zhǎng)軸長(zhǎng)的比叫做橢圓的離心率.它的值表示橢圓的扁平程度.0<e<1.e越接近于1時(shí),橢圓越扁;反之,e越接近于0時(shí),橢圓就越接近于圓.2.橢圓的第
10、二定義⑴定義:平面內(nèi)動(dòng)點(diǎn)M與一個(gè)頂點(diǎn)的距離和它到一條定直線的距離的比是常數(shù)(e<1=時(shí),這個(gè)動(dòng)點(diǎn)的軌跡是橢圓.⑵準(zhǔn)線:根據(jù)橢圓的對(duì)稱(chēng)性,(>>0)的準(zhǔn)線有兩條,它們的方程為.對(duì)于橢圓(>>0)的準(zhǔn)線方程,只要把x換成y就可以了,即.3.橢圓的焦半徑:由橢圓上任意一點(diǎn)與其焦點(diǎn)所連的線段叫做這點(diǎn)的焦半徑.設(shè)(-c,0),(c,0)分別為橢圓(>>0)的左、右兩焦點(diǎn),M(x,y)是橢圓上任一點(diǎn),則兩條焦半徑長(zhǎng)分別為,.橢圓中涉及焦半徑時(shí)運(yùn)用焦半徑知識(shí)解題往往比較簡(jiǎn)便.橢圓的四個(gè)主要元素a、b、c、e中有=+、兩個(gè)關(guān)系,因此確定橢圓的標(biāo)準(zhǔn)
11、方程只需兩個(gè)獨(dú)立條件.4.橢圓的參數(shù)方程橢圓(>>0)的參數(shù)方程為(θ為參數(shù)).說(shuō)明⑴這里參數(shù)θ叫做橢圓的離心角.橢圓上點(diǎn)P的離心角θ與直線OP的傾斜角α不同:;⑵橢圓的參數(shù)方程可以由方程與三角恒等式相比較而得到,所以橢圓的參數(shù)方程的實(shí)質(zhì)是三角代換.92.橢圓的參數(shù)方程是.5.橢圓的的內(nèi)外部(1)點(diǎn)在橢圓的內(nèi)部.(2)點(diǎn)在橢圓的外部.6.橢圓的切線方程橢圓上一點(diǎn)處的切線方程是.(2)過(guò)橢圓外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是.(3)橢圓與直線相切的條件是雙曲線及其標(biāo)準(zhǔn)方程雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)、的距離的差的絕對(duì)值等于常數(shù)2a(
12、小于
13、
14、)的動(dòng)點(diǎn)的軌跡叫做雙曲線.在這個(gè)定義中,要注意條件2a<
15、
16、,這一條件可以用“三角形的兩邊之差小于第三邊”加以理解.若2a=
17、
18、,則動(dòng)點(diǎn)的軌跡是兩條射線;若2a>
19、
20、,則無(wú)軌跡.若<時(shí),動(dòng)點(diǎn)的軌跡僅為雙曲線的一個(gè)分支,又若>時(shí),軌跡為雙曲線的另一支.而雙曲線是由兩個(gè)分支組成的,故在定義中應(yīng)為“差的絕對(duì)值”.雙曲線的標(biāo)準(zhǔn)方程:和(a>0,b>0).這里,其中
21、
22、=2c.要注意這里的a、b、c及它們之間的關(guān)系與橢圓中的異同.3.雙曲線的標(biāo)準(zhǔn)方程判別方法是:如果項(xiàng)的系數(shù)是正數(shù),則焦點(diǎn)在x軸上;如果項(xiàng)的系數(shù)是正數(shù),則焦點(diǎn)在y軸上.
23、對(duì)于雙曲線,a不一定大于b,因此不能像橢圓那樣,通過(guò)比較分母的大小來(lái)判斷焦點(diǎn)在哪一條坐標(biāo)軸上.4.求雙曲線的標(biāo)準(zhǔn)方程,應(yīng)注意兩個(gè)問(wèn)題:⑴正確判斷焦點(diǎn)的位置;⑵設(shè)出標(biāo)準(zhǔn)方程后,運(yùn)用待定系數(shù)法求解.雙曲線的簡(jiǎn)單幾何性質(zhì)雙曲線的實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,離心率>1,離心率e越大,雙曲線的開(kāi)口越大.雙曲線的漸近線方程為或表示為.若已知雙曲線的漸近線方程是,即,那么雙曲線的方程具有以下形式:,其中k是一個(gè)不為零的常數(shù).雙曲線的第二定義:平面內(nèi)到定點(diǎn)(焦點(diǎn))與到定直線(準(zhǔn)線)距離的比是一個(gè)大于1的常數(shù)(離心率)的點(diǎn)的軌跡叫做雙曲線.對(duì)于雙曲
24、線,它的焦點(diǎn)坐標(biāo)是(-c,0)和(c,0),與它們對(duì)應(yīng)的準(zhǔn)線方程分別是和.雙曲線的焦半徑公式,.雙曲線的內(nèi)外部點(diǎn)在雙曲線的內(nèi)部.點(diǎn)在雙曲線的外部.雙曲線的方程與漸近線方程的關(guān)系(1)若雙曲線方程為漸近線方程:.若漸近線方程為雙曲線可設(shè)為.若雙曲線與