12、已知函數(shù)f(x)=ax3+bx2+cx+d在x=0處取得極值,曲線y=f(x)過原點(diǎn)和點(diǎn)P(-1,2).若曲線f(x)在點(diǎn)P處的切線的斜率為-3.(1)求f(x)的解析式;(2)若f(x)在區(qū)間[2m-1,m+1]遞增,求m的取值范圍.導(dǎo)數(shù)的應(yīng)用舉例4解:(1)∵曲線y=f(x)=ax3+bx2+cx+d過原點(diǎn),∴f(0)=0?d=0.∴f(x)=ax3+bx2+cx,f?(x)=3ax2+2bx+c.∵函數(shù)f(x)=ax3+bx2+cx在x=0處取得極值,∴f?(0)=0?c=0.解得f?(-1)=-3.又f(-1)=2,∴3a
13、-2b=-3且-a+b=2.解得a=1,b=3.∴f(x)=x3+3x2.已知函數(shù)f(x)=ax3+bx2+cx+d在x=0處取得極值,曲線y=f(x)過原點(diǎn)和點(diǎn)P(-1,2).若曲線f(x)在點(diǎn)P處的切線與直線y=2x的夾角為45?,且傾角為鈍角.(1)求f(x)的解析式;(2)若f(x)在區(qū)間[2m-1,m+1]遞增,求m的取值范圍.導(dǎo)數(shù)的應(yīng)用舉例4解:(2)由(1)知f?(x)=3x2+6x.又由f?(x)>0?x<-2或x>0,∴f(x)的單調(diào)遞增區(qū)間為(-∞,-2]和[0,+∞).∵函數(shù)f(x)在區(qū)間[2m-1,m+1]
14、遞增,∴2m-12m-1≥0.∴[2m-1,m+1](-∞,-2]或[2m-1,m+1][0,+∞).解得m≤-3或≤m<2.12即m的取值范圍是(-∞,-3]∪[,2).12導(dǎo)數(shù)的應(yīng)用舉例5已知函數(shù)f(x)=x3-ax2-