資源描述:
《街頭騙局解密.doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、仿真平臺(tái)與工具應(yīng)用實(shí)踐街頭騙局解密設(shè)計(jì)報(bào)告院系:專業(yè)班級(jí):姓名:學(xué)號(hào):指導(dǎo)老師:9目錄第一節(jié)Matlab工程實(shí)訓(xùn)意義-----------------------3第二節(jié)相關(guān)matlab分析原理與應(yīng)用———————31、題目————————————-32、設(shè)計(jì)內(nèi)容——————————3第三節(jié)方法、步驟設(shè)計(jì)————————————4第四節(jié)實(shí)訓(xùn)實(shí)驗(yàn)結(jié)果分析———————————51、理論結(jié)果——————————52、模擬結(jié)果——————————53、結(jié)果分析——————————6第五節(jié)工程實(shí)訓(xùn)小結(jié)——————
2、———————6第六節(jié)參考資料———————————————7附件(源程序)———————————————————89一、工程實(shí)訓(xùn)意義Matlab在信號(hào)與系統(tǒng)中應(yīng)用能夠讓學(xué)生熟悉MATLAB軟件平臺(tái).工具箱.高效率的數(shù)值運(yùn)算及符號(hào)運(yùn)算功能.熟悉MATLAB軟件的信號(hào)處理編程方法和結(jié)果的可視化.了解數(shù)字信號(hào)處理的計(jì)算機(jī)仿真方法.進(jìn)一步加深對(duì)信號(hào)與系統(tǒng)的基本原理.方法及應(yīng)用的理解.MATLAB軟件具有強(qiáng)大的數(shù)值分析和計(jì)算結(jié)果可視化的功能.運(yùn)用MATLAB軟件,通過一個(gè)運(yùn)用實(shí)例,將信號(hào)與系統(tǒng)課程的理論與實(shí)踐教學(xué)
3、有機(jī)地結(jié)合,有效地解決了教學(xué)中的難點(diǎn)問題,說明了MATLAB軟件在信號(hào)與系統(tǒng)課程的時(shí)間教學(xué)中具有重要的實(shí)際意義二、相關(guān)matlab分析原理與應(yīng)用1、題目街頭常見一類“摸球游戲”,游戲規(guī)則是這樣的:一代裝有16個(gè)大小形狀相同的玻璃球,其中8個(gè)紅色,8個(gè)白色,游戲者從中一次摸出8個(gè),8個(gè)球中,兩種顏色出現(xiàn)以下比數(shù)時(shí),摸球者可得到相應(yīng)的“獎(jiǎng)勵(lì)”或“懲罰”,如下表所示:可能結(jié)果ABCDE8:07:16:25:34:4獎(jiǎng)金(罰金)/元1010.50.2-39此游戲從表面上看,非常有吸引力,5種可能出現(xiàn)的結(jié)果有4種可
4、得到獎(jiǎng)金,且最高獎(jiǎng)金達(dá)10元,而只有一種情況受罰,罰金只有3元,分析此游戲是否值得玩?2、設(shè)計(jì)內(nèi)容:l理論分析解游戲者一次游戲中得到獎(jiǎng)金的平均值是多少?正數(shù)為獎(jiǎng)金,負(fù)數(shù)為罰金l請(qǐng)用蒙特卡洛方法求解(m文件)三、方法、步驟設(shè)計(jì)第一個(gè)理論分析游戲者一次游戲中得到的獎(jiǎng)金(或罰金)的平均值,其實(shí)也就是求一次獲得獎(jiǎng)金(或罰金)的期望問題,根據(jù)概率論與數(shù)理統(tǒng)計(jì)中的期望值計(jì)算方法,首先將各種可能結(jié)果算出各自發(fā)生的概率,然后分別乘以該可能結(jié)果下的獎(jiǎng)金(或罰金)并加總即可得到期望,也就是一次結(jié)果的理論值,即游戲者一次游戲中
5、得到獎(jiǎng)金的平均值。第二問要求用蒙特卡洛方法求解,所謂的蒙特卡洛方法,就是一種隨機(jī)模擬方法,以概率和統(tǒng)計(jì)理論方法為基礎(chǔ)的一種計(jì)算方法,是使用隨機(jī)數(shù)(或更常見的偽隨機(jī)數(shù))來解決很多計(jì)算問題的方法。將所求解的問題同一定的概率模型相聯(lián)系,用電子計(jì)算機(jī)實(shí)現(xiàn)統(tǒng)計(jì)模擬或抽樣,以獲得問題的近似解。因此,我們需要設(shè)定一個(gè)連續(xù)均勻分布的隨機(jī)數(shù)組,然后根據(jù)各個(gè)概率設(shè)置不同的區(qū)間,每一個(gè)區(qū)間的長度由各自的概率大小決定。即將數(shù)組設(shè)計(jì)為長度為“1”的線性數(shù)組,按照那五種情況各自的概率的大小作為五個(gè)區(qū)間的長度。然后用m個(gè)總長度范圍內(nèi)的
6、點(diǎn)去模擬,看落在哪個(gè)區(qū)間范圍內(nèi)。然后計(jì)算落在各自區(qū)間的點(diǎn)的9總數(shù)目,用各自累計(jì)的數(shù)目除以m,然后再分別乘以各自區(qū)間對(duì)應(yīng)的獎(jiǎng)金(或罰金)的數(shù)值并加總求和,得出來的值即為在蒙特卡洛方法下求得的平均值。而且我們假設(shè)的m點(diǎn)越多,其所得的值就會(huì)越來越接近我們求得的理論數(shù)值,因此在這里我們選擇m值為1000000。四、實(shí)訓(xùn)實(shí)驗(yàn)結(jié)果分析1、理論結(jié)果理論上出現(xiàn)一下情況的概率:8:0概率:2*C(8,8)/C(16,8)=1/64357:1概率:2*C(8,7)*C(8,1)/C(16,8)=64/64356:2概率:2*
7、C(8,6)*C(8,2)/C(16,8)=784/64355:3概率:2*C(8,5)*C(8,3)/C(16,8)=3136/64354:4概率:C(8,4)*C(8,4)//C(16,8)=2450/6435理論上一次的平均值(期望):E(X)=10*1/6435+1*64/6435+0.5*784/6435+0.2*3136/6435-3*2450/6435=-0.97232、模擬結(jié)果為了使結(jié)果盡可能的精確,我們這里取20組結(jié)果如下所示(截圖):91、結(jié)果分析從我們得出的這20組數(shù)據(jù),我們可以看出
8、這組數(shù)據(jù)結(jié)果與理論值誤差不是很大,都固定在一定的范圍內(nèi),而有一些甚至與理論值完全吻合,我想這與我們?nèi)×舜罅康狞c(diǎn)作為模擬計(jì)算的基礎(chǔ)有很大的關(guān)聯(lián),想要使數(shù)據(jù)更加的精確,我們可以選擇更大的值作為基數(shù)來計(jì)算。在本題中,我們可以計(jì)算得出值為-0.9723,也就是說平均每次游戲要罰金-0.9723元,對(duì)游戲者是不利的,因此“摸球游戲”是不值得玩的。五、工程實(shí)訓(xùn)小結(jié)這一次的9matlab總共只有一周的時(shí)間,我們只是初步的掌握了其技能,但是沒