資源描述:
《基于欠采樣隨機(jī)共振的單頻微弱信號(hào)檢測(cè)新方法-論文.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、第54卷第5期電訊技術(shù)Vo1.54No.52014年5月TelecommunicationEngineeringMav2014doi:10.3969/j.issn.1001—893x.2014.05.015引用格式:石盛超,李廣俠,李志強(qiáng),等.基于欠采樣隨機(jī)共振的單頻微弱信號(hào)檢測(cè)新方法[J].電訊技術(shù),2014,54(5):605-610.[SHISheng-chao,LIGuang—xia,LIZhi—qiang,eta1.ANovelWeakSingleFrequencySignalDetectionMethodBasedonU
2、nder—SamplingStochasticReso—nanee[J].TelecommunicationEngineering,2014,54(5):605-610.]基于欠采樣隨機(jī)共振的單頻微弱信號(hào)檢測(cè)新方法石盛超,料,李廣俠,李志強(qiáng),馮少棟,張衛(wèi)同(1.解放軍理工大學(xué)通信工程學(xué)院,南京210007;2.解放軍96610部隊(duì),北京102208)摘要:由于隨機(jī)共振具有在特定條件下增強(qiáng)微弱信號(hào)信噪比的特性,近年來(lái)成為一種全新的微弱信號(hào)檢測(cè)手段。為了克服隨機(jī)共振絕熱近似理論小參數(shù)條件的限制,提出一種基于欠采樣隨機(jī)共振的微弱信號(hào)檢測(cè)方
3、法。通過(guò)欠采樣尺度變換與還原技術(shù),實(shí)現(xiàn)了大參數(shù)信號(hào)的隨機(jī)共振處理,突破了二次采樣變尺度隨機(jī)共振算法要求采樣頻率必須大于信號(hào)頻率的50倍的限制。構(gòu)建了基于欠采樣隨機(jī)共振的微弱信號(hào)檢測(cè)模型,從理論上證明了方法的可行性。最后利用該方法對(duì)信噪比為一27dB條件下的微弱單頻信號(hào)檢測(cè)進(jìn)行了仿真,結(jié)果進(jìn)一步驗(yàn)證了所提微弱信號(hào)檢測(cè)方案的正確性。所提方法大大降低了信號(hào)的采樣速率,為將隨機(jī)共振應(yīng)用于科斯塔斯(Costas)環(huán)的改進(jìn)奠定了基礎(chǔ)。關(guān)鍵詞:深空通信;微弱信號(hào)檢測(cè);隨機(jī)共振;欠采樣;尺度變換中圖分類號(hào):TN911.72文獻(xiàn)標(biāo)志碼:A文章編號(hào):1
4、001—893X(2014)05—0605—06ANovelWeakSingleFrequencySignalDetectionMethodBasedonUnder-SamplingStochasticResonanceSHISheng—chao,LIGuang—xia,LIZhi—qiang,F(xiàn)ENGShao—dong2,ZHANGWei—tong(1.CollegeofCommunicationsEngineering,PLAUniversityofScienceandTechnology,Nanjing210007,China
5、;2.Unit96610ofPLA,Beijing102208,China)Abstract:Stochasticresonanceiswidelyappliedtodetectweaksignalinastrongnoisebackgroundbe-causeitcanenhancethesignal—to—noiseratio(SNR).Aweaksinglefrequencysignaldetectionmethodbasedonunder-samplingstochasticresonanceisproposedtosolv
6、etheproblemthattraditionalstochasticresonancecanbeonlyappliedtodealwithsmallparametersignals.Stochasticresonanceissuccessfullyex—pandedintotheapplicationsofthelargeparametersignalsonthebasisofscale——transformationandretrievetechnologyintheunder-samplingstochasticresona
7、nce.Moreover,thealgorithmovercomesthelimitthatsignalfrequencymustbemorethan50timesofthesamplingfrequencyinthesecondsamplealgorithm.Themodelofweaksignaldetectionbasedonunder—samplingstochasticresonanceisputforward.Finally,detectingtheweaksinglefrequencysignalunderSNR=-2
8、7dBbackgroundbythemethodproposedinthispaperissimulated.Theresultprovesthevalidityofthemethod.Thesamplingfrequencyinth