資源描述:
《【強(qiáng)烈推薦】高中數(shù)學(xué)必修二基本慨念公式大全.docx》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、..高中數(shù)學(xué)必修二基本慨念公式大全基本概念公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)平面內(nèi)。公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線。公理3:過不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。推論1:經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。推論2:經(jīng)過兩條相交直線,有且只有一個(gè)平面。推論3:經(jīng)過兩條平行直線,有且只有一個(gè)平面。公理4:平行于同一條直線的兩條直線互相平行。等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等??臻g兩直線的位置關(guān)系:空間兩條直線只有三種位置關(guān)系:平行、相交
2、、異面1、按是否共面可分為兩類:(1)共面:平行、相交(2)異面:異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法2、若從有無公共點(diǎn)的角度看可分為兩類:(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面直線和平面的位置關(guān)系:直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)②直線和平面相交——有且只有
3、一個(gè)公共點(diǎn)直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。.空間向量法(找平面的法向量)規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角由此得直線和平面所成角的取值范圍為[0°,90°]最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直直線和平面垂直直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。直線與平面垂
4、直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn);...直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。兩個(gè)平面的位置關(guān)系:(1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)(2)兩個(gè)
5、平面的位置關(guān)系:兩個(gè)平面平行-----沒有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線。a、平行兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。b、相交二面角(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°](3)二面角的棱:這一條直線叫做二面角的棱。(4)二面角的面:這兩個(gè)半平面叫做二面角的面。(5)二面角的平面角:以二面角的棱上任
6、意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。(6)直二面角:平面角是直角的二面角叫做直二面角。兩平面垂直兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為⊥兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)多面體棱柱棱柱的定義:有兩個(gè)面互相平行,其余各
7、面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。棱柱的性質(zhì)(1)側(cè)棱都相等,側(cè)面是平行四邊形(2)兩個(gè)底面與平行于底面的截面是全等的多邊形(3)過不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形棱錐棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐棱錐的性質(zhì):;...(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方正棱錐正棱錐的定義:如