資源描述:
《基于matlab的電力系統(tǒng)潮流計(jì)算論文》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、基于MATLAB的電力系統(tǒng)潮流計(jì)算畢業(yè)論文1引言1.1本課題的目的和意義電力系統(tǒng)潮流計(jì)算是對(duì)復(fù)雜電力系統(tǒng)正常和故障條件下穩(wěn)態(tài)運(yùn)行狀態(tài)的計(jì)算。其目的是求取電力系統(tǒng)在給定運(yùn)行方式下的節(jié)點(diǎn)電壓和功率分布,用以檢查系統(tǒng)各元件是否過負(fù)荷、各點(diǎn)電壓是否滿足要求、功率分布和分配是否合理以及功率損耗等,是電力系統(tǒng)計(jì)算分析中的一種最基本的計(jì)算[1]。潮流計(jì)算是電力系統(tǒng)的各種計(jì)算的基礎(chǔ),同時(shí)它又是研究電力系統(tǒng)的一項(xiàng)重要分析功能,是進(jìn)行故障計(jì)算,繼電保護(hù)鑒定,安全分析的工具。電力系統(tǒng)潮流計(jì)算是計(jì)算系統(tǒng)動(dòng)態(tài)穩(wěn)定和靜態(tài)穩(wěn)定的基礎(chǔ)。在電力系統(tǒng)規(guī)劃設(shè)計(jì)和現(xiàn)有電力系統(tǒng)運(yùn)行
2、方式的研究中,都需要利用電力系統(tǒng)潮流計(jì)算來(lái)定量的比較供電方案或運(yùn)行方式的合理性、可靠性和經(jīng)濟(jì)性[1]。對(duì)于正在規(guī)劃的電力系統(tǒng),通過潮流計(jì)算,可以為選擇電網(wǎng)供電方案和電氣設(shè)備提供依據(jù)。潮流計(jì)算還可以為繼電保護(hù)和自動(dòng)裝置整定計(jì)算、電力系統(tǒng)故障計(jì)算和穩(wěn)定計(jì)算等提供原始數(shù)據(jù)。潮流計(jì)算的目的在于:確定是電力系統(tǒng)的運(yùn)行方式;檢查系統(tǒng)中的各元件是否過壓或過載;為電力系統(tǒng)繼電保護(hù)的整定提供依據(jù);為電力系統(tǒng)的穩(wěn)定計(jì)算提供初值,為電力系統(tǒng)規(guī)劃和經(jīng)濟(jì)運(yùn)行提供分析的基礎(chǔ)。因此,電力系統(tǒng)潮流計(jì)算是電力系統(tǒng)中一項(xiàng)最基本的計(jì)算,既具有一定的獨(dú)立性,又是研究其他問題的基礎(chǔ)
3、[1]。1.2國(guó)內(nèi)外發(fā)展現(xiàn)狀利用電子計(jì)算機(jī)進(jìn)行潮流計(jì)算從20世紀(jì)50年代中期就已經(jīng)開始。此后,潮流計(jì)算曾采用了各種不同的方法,這些方法的發(fā)展主要是圍繞著對(duì)潮流計(jì)算的一些基本要求進(jìn)行的。對(duì)潮流計(jì)算的要求可以歸納為下面幾點(diǎn):(1)算法的可靠性或收斂性(2)計(jì)算速度和內(nèi)存占用量(3)計(jì)算的方便性和靈活性50電力系統(tǒng)潮流計(jì)算屬于穩(wěn)態(tài)分析范疇,不涉及系統(tǒng)元件的動(dòng)態(tài)特性和過渡過程。因此其數(shù)學(xué)模型不包含微分方程,是一組高階非線性方程。非線性代數(shù)方程組的解法離不開迭代,因此,潮流計(jì)算方法首先要求它是能可靠的收斂,并給出正確答案。隨著電力系統(tǒng)規(guī)模的不斷擴(kuò)大,
4、潮流問題的方程式階數(shù)越來(lái)越高,目前已達(dá)到幾千階甚至上萬(wàn)階,對(duì)這樣規(guī)模的方程式并不是采用任何數(shù)學(xué)方法都能保證給出正確答案的。這種情況促使電力系統(tǒng)的研究人員不斷尋求新的更可靠的計(jì)算方法[2]。1.2.1高斯-賽德爾迭代法在用數(shù)字計(jì)算機(jī)求解電力系統(tǒng)潮流問題的開始階段,人們普遍采用以節(jié)點(diǎn)導(dǎo)納矩陣為基礎(chǔ)的高斯-賽德爾迭代法(一下簡(jiǎn)稱導(dǎo)納法)。這個(gè)方法的原理比較簡(jiǎn)單,要求的數(shù)字計(jì)算機(jī)的內(nèi)存量也比較小,適應(yīng)當(dāng)時(shí)的電子數(shù)字計(jì)算機(jī)制作水平和電力系統(tǒng)理論水平,于是電力系統(tǒng)計(jì)算人員轉(zhuǎn)向以阻抗矩陣為主的逐次代入法(以下簡(jiǎn)稱阻抗法)。20世紀(jì)60年代初,數(shù)字計(jì)算機(jī)已
5、經(jīng)發(fā)展到第二代,計(jì)算機(jī)的內(nèi)存和計(jì)算速度發(fā)生了很大的飛躍,從而為阻抗法的采用創(chuàng)造了條件。阻抗矩陣是滿矩陣,阻抗法要求計(jì)算機(jī)儲(chǔ)存表征系統(tǒng)接線和參數(shù)的阻抗矩陣。這就需要較大的內(nèi)存量。而且阻抗法每迭代一次都要求順次取阻抗矩陣中的每一個(gè)元素進(jìn)行計(jì)算,因此,每次迭代的計(jì)算量很大[3]。阻抗法改善了電力系統(tǒng)潮流計(jì)算問題的收斂性,解決了導(dǎo)納法無(wú)法解決的一些系統(tǒng)的潮流計(jì)算,在當(dāng)時(shí)獲得了廣泛的應(yīng)用,曾為我國(guó)電力系統(tǒng)設(shè)計(jì)、運(yùn)行和研究作出了很大的貢獻(xiàn)。但是,阻抗法的主要缺點(diǎn)就是占用計(jì)算機(jī)的內(nèi)存很大,每次迭代的計(jì)算量很大。當(dāng)系統(tǒng)不斷擴(kuò)大時(shí),這些缺點(diǎn)就更加突出。為了克
6、服阻抗法在內(nèi)存和速度方面的缺點(diǎn),后來(lái)發(fā)展了以阻抗矩陣為基礎(chǔ)的分塊阻抗法。這個(gè)方法把一個(gè)大系統(tǒng)分割為幾個(gè)小的地區(qū)系統(tǒng),在計(jì)算機(jī)內(nèi)只需存儲(chǔ)各個(gè)地區(qū)系統(tǒng)的阻抗矩陣及它們之間的聯(lián)絡(luò)線的阻抗,這樣不僅大幅度的節(jié)省了內(nèi)存容量,同時(shí)也提高了計(jì)算速度[4]。1.2.2牛頓-拉夫遜法和P-Q分解法克服阻抗法缺點(diǎn)的另一途徑是采用牛頓-拉夫遜法(以下簡(jiǎn)稱牛拉法)。牛拉法是數(shù)學(xué)中求解非線性方程式的典型方法,有較好的收斂性。解決電力系統(tǒng)潮流計(jì)算問題是以導(dǎo)納矩陣為基礎(chǔ)的,因此,只要在迭代過程中盡可能保持方程式系數(shù)矩陣的稀疏性,就可以大大提高牛頓潮流程序的計(jì)算效率。自從
7、20世紀(jì)60年代中期采用了最佳順序消去法以后,牛拉法在收斂性、內(nèi)存要求、計(jì)算速度方面都超過了阻抗法,成為直到目前仍被廣泛采用的方法。50在牛拉法的基礎(chǔ)上,根據(jù)電力系統(tǒng)的特點(diǎn),抓住主要矛盾,對(duì)純數(shù)學(xué)的牛拉法進(jìn)行了改造,得到了P-Q分解法。P-Q分解法在計(jì)算速度方面有顯著的提高,迅速得到了推廣[5]。牛拉法的特點(diǎn)是將非線性方程線性化。20世紀(jì)70年代后期,有人提出采用更精確的模型,即將泰勒級(jí)數(shù)的高階項(xiàng)也包括進(jìn)來(lái),希望以此提高算法的性能,這便產(chǎn)生了保留非線性的潮流算法。另外,為了解決病態(tài)潮流計(jì)算,出現(xiàn)了將潮流計(jì)算表示為一個(gè)無(wú)約束非線性規(guī)劃問題的模
8、型,即非線性規(guī)劃潮流算法[6]。近20多年來(lái),潮流算法的研究仍然非?;钴S,但是大多數(shù)研究都是圍繞改進(jìn)牛拉法和P-Q分解法進(jìn)行的。此外,隨著人工智能理論的發(fā)展,遺傳算法、人工神經(jīng)網(wǎng)