markov chain monte carlo methods

markov chain monte carlo methods

ID:7279952

大?。?13.61 KB

頁數(shù):36頁

時間:2018-02-10

markov chain monte carlo methods_第1頁
markov chain monte carlo methods_第2頁
markov chain monte carlo methods_第3頁
markov chain monte carlo methods_第4頁
markov chain monte carlo methods_第5頁
資源描述:

《markov chain monte carlo methods》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在工程資料-天天文庫。

1、6MarkovChainMonteCarloMethods6.1IntroductionInChapter5,weintroducedtheuseofsimulationinBayesianinference.Rejec-tionsamplingisageneralmethodforsimulatingfromanarbitraryposteriordistribution,butitcanbedi?culttosetupsinceitrequirestheconstruc-tionofasuita

2、bleproposaldensity.ImportancesamplingandSIRalgorithmsarealsogeneral-purposealgorithms,buttheyalsorequireproposaldensitiesthatmaybedi?cultto?ndforhigh-dimensionalproblems.Inthischapter,weillustratetheuseofMarkovchainMonteCarlo(MCMC)algorithmsinsummarizi

3、ngposteriordistributions.Markovchainsareintroducedinthedis-cretestatespacesituationinSection6.2.Throughasimplerandomwalkexample,weillustratesomeoftheimportantpropertiesofaspecialMarkovchain,andweuseRtosimulatefromthechainandmovetowardthesta-tionarydist

4、ribution.InSection6.3,wedescribetwovariantsofthepopularMetropolis-HastingsalgorithmsinsettingupMarkovchains,andinSection6.4wedescribeGibbssampling,wheretheMarkovchainissetupthroughtheconditionaldistributionsoftheposterior.Wedescribeonestrategyforsum-ma

5、rizingaposteriordistributionandillustrateitforthreeproblems.MCMCalgorithmsareveryattractiveinthattheyareeasytosetupandprogramandrequirerelativelylittlepriorinputfromtheuser.Risaconvenientlanguageforprogrammingthesealgorithmsandisalsoverysuitableforperf

6、ormingout-putanalysis,whereonedoesseveralgraphicalandnumericalcomputationstocheckifthealgorithmisindeedproducingdrawsfromthetargetposteriordistribution.6.2IntroductiontoDiscreteMarkovChainsSupposeapersontakesarandomwalkonanumberlineonthevalues1,2,3,4,5

7、,6.Ifthepersoniscurrentlyataninteriorvalue(2,3,4,or5),inthenextsecondsheisequallylikelytoremainatthatnumberormovetoanadjacentJ.Albert,BayesianComputationwithR,UseR,DOI10.1007/978-0-387-92298-06,?SpringerScience+BusinessMedia,LLC20091186MarkovChainMonte

8、CarloMethodsnumber.Ifshedoesmove,sheisequallylikelytomoveleftorright.Ifthepersoniscurrentlyatoneoftheendvalues(1or6),inthenextsecondsheisequallylikelytostaystillormovetotheadjacentlocation.ThisisasimpleexampleofadiscreteMarkovchain.AMar

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。