資源描述:
《first order differential equations》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。
1、August7,201221:03c02Sheetnumber1Pagenumber31cyanblackCHAPTER2FirstOrderDifferentialEquationsThischapterdealswithdifferentialequationsof?rstorderdy=f(t,y),(1)dtwherefisagivenfunctionoftwovariables.Anydifferentiablefunctiony=φ(t)thatsatis?esthisequationforalltinsomeintervaliscalledasolution,ando
2、urobjectistodeterminewhethersuchfunctionsexistand,ifso,todevelopmethodsfor?ndingthem.Unfortunately,foranarbitraryfunctionf,thereisnogeneralmethodforsolv-ingtheequationintermsofelementaryfunctions.Instead,wewilldescribeseveralmethods,eachofwhichisapplicabletoacertainsubclassof?rstorderequations
3、.Themostimportantofthesearelinearequations(Section2.1),separableequa-tions(Section2.2),andexactequations(Section2.6).Othersectionsofthischapterdescribesomeoftheimportantapplicationsof?rstorderdifferentialequations,intro-ducetheideaofapproximatingasolutionbynumericalcomputation,anddiscusssometh
4、eoreticalquestionsrelatedtotheexistenceanduniquenessofsolutions.The?nalsectionincludesanexampleofchaoticsolutionsinthecontextof?rstorderdifferenceequations,whichhavesomeimportantpointsofsimilaritywithdifferentialequationsandaresimplertoinvestigate.2.1LinearEquations;MethodofIntegratingFactorsI
5、fthefunctionfinEq.(1)dependslinearlyonthedependentvariabley,thenEq.(1)iscalleda?rstorderlinearequation.InSections1.1and1.2wediscussedarestrictedtypeof?rstorderlinearequationinwhichthecoef?cientsareconstants.31August7,201221:03c02Sheetnumber2Pagenumber32cyanblack32Chapter2.FirstOrderDifferentia
6、lEquationsAtypicalexampleisdy=?ay+b,(2)dtwhereaandbaregivenconstants.Recallthatanequationofthisformdescribesthemotionofanobjectfallingintheatmosphere.Nowwewanttoconsiderthemostgeneral?rstorderlinearequation,whichisobtainedbyreplacingthecoef?cientsaandbinEq.(2)byarbitraryfunctionsoft.Wewillusua
7、llywritethegeneral?rstorderlinearequationinthestandardformdy+p(t)y=g(t),(3)dtwherepandgaregivenfunctionsoftheindependentvariablet.SometimesitismoreconvenienttowritetheequationintheformdyP(t)+Q(t)y=G(t),(4)dtwhereP,Q,andGaregiven.Ofcours