applications of conjugate operators to determination of jumps for functions

applications of conjugate operators to determination of jumps for functions

ID:7289732

大?。?02.81 KB

頁(yè)數(shù):13頁(yè)

時(shí)間:2018-02-10

applications of conjugate operators to determination of jumps for functions_第1頁(yè)
applications of conjugate operators to determination of jumps for functions_第2頁(yè)
applications of conjugate operators to determination of jumps for functions_第3頁(yè)
applications of conjugate operators to determination of jumps for functions_第4頁(yè)
applications of conjugate operators to determination of jumps for functions_第5頁(yè)
資源描述:

《applications of conjugate operators to determination of jumps for functions》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。

1、ActaMath.Hungar.,134(4)(2012),439–451DOI:10.1007/s10474-011-0131-1FirstpublishedonlineJune17,2011APPLICATIONSOFCONJUGATEOPERATORSTODETERMINATIONOFJUMPSFORFUNCTIONS?X.L.SHIandW.WANGCollegeofMathematicsandComputerScience,HunanNormalUniversity,Changsha410081,Chinae-mails:xianliangshi@yahoo.co

2、m,wwang.wei011@yahoo.com.cn(ReceivedDecember25,2010;acceptedFebruary14,2011)Abstract.Weprovethattheconjugateconvolutionoperatorscanbeusedtocalculatejumpsforfunctions.OurresultsgeneralizethetheoremsestablishedbyHeandShi.Furthermore,byusingLuk′acsandM′oricz’sidea,wesolveanopenquestionposedby

3、ShiandHu.1.IntroductionDeterminationofjumpsforfunctionsplaysanimportantroleindetec-tionofedges(see[4]).Manyauthors,suchasL.Fej′er,F.Luk′acs,B.L.Golubov,G.Kvernadge,F.M′oricz,A.Gelb,E.Tadmor,X.L.Shi,Q.L.Shi,L.Hu,H.Y.Zhang,P.Zhou,S.P.Zhou,Z.T.He,etc.wereinterestedinthisquestion(see[3–17]).Re

4、cently,Z.T.HeandX.L.Shi[6]introducedanewmethodtodeterminejumpsforfunctions.LetφbeafunctioninL(R)withφ(x)dx=1.DenotebyφtheHilberttransformofφ,i.e.R1φ(x?y)1φ(x?y)φ(x):=H(φ)(x):=p.v.dy:=limdy.πRyπε→0+

5、y

6、>εyForthefollowingthreespecialkernels:1?x2(1.1)φ(x)=√e,π11(1.2)φ(x)=,π1+x2?Correspond

7、ingauthor.Keywordsandphrases:Hilberttransform,convolution,jump,Shannonwavelet.2000MathematicsSubjectClassi?cation:42A50,42A16.0236-5294/$20.00c2011Akad′emiaiKiad′o,Budapest,Hungary440X.L.SHIandW.WANGand?1∞dt1(1.3)φ(x)=2,01+t41+x4theyprovedthatiff∈L(R)andξ∈Risasimplediscontinuityoff,the

8、nπl(wèi)im?Tn(f)(ξ)=dξ(f),n→∞lnnwhere(1.4)dξ(f)=f(ξ+0)?f(ξ?0),andTn(f)isde?nedasfollows.Setφn(x)=nφ(nx),then(1.5)Tn(f)(x):=φn?f(x).The?rstaimofthispaperistogeneralizetheirresultstomoregeneralcases.Theorem1.Assumethatthefunctionφ∈L(R)satis?esthefollowingconditions:i)φ(x)dx=1;Rii)φiseven,i

9、.e.φ(?x)=φ(x);Ciii)φ(x)1+α,α>0;1+

10、x

11、Cω

12、u

13、iv)φ(x+u)?φ(x?u)1+α,α>0,1+

14、x

15、whereω(t)isamodulosofcontinuitywhichsatis?es1ω(t)dt<∞.0tIfξ∈Risasimplediscontinuityoff∈L1(R),thenπ(1.6)lim?Tn(f)(ξ)=dξ(f),n→∞lnnwhereTnisde?nedasin(1.5).ActaMathematicaHungar

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。