資源描述:
《multiscale stochastic volatility asymptotics》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、MULTISCALEMODEL.SIMUL.c2003SocietyforIndustrialandAppliedMathematicsVol.2,No.1,pp.22–42MULTISCALESTOCHASTICVOLATILITYASYMPTOTICS?JEAN-PIERREFOUQUE?,GEORGEPAPANICOLAOU?,RONNIESIRCAR§,ANDKNUTSOLNA?Abstract.Inthispaperweproposetouseacombinationofregularandsingularperturbationstoanalyzepara
2、bolicPDEsthatariseinthecontextofpricingoptionswhenthevolatilityisastochasticprocessthatvariesonseveralcharacteristictimescales.TheclassicalBlack–ScholesformulagivesthepriceofcalloptionswhentheunderlyingisageometricBrownianmotionwithaconstantvolatility.Theunderlyingmightbethepriceofastock
3、oranindex,say,andaconstantvolatilitycorrespondstoa?xedstandarddeviationfortherandom?uctuationsinthereturnsoftheunderlying.Modernmarketphenomenamakeitimportanttoanalyzethesituationwhenthisvolatilityisnot?xedbutratherisheterogeneousandvarieswithtime.Inpreviouswork(see,forinstance,[J.P.Fouq
4、ue,G.Papanicolaou,andK.R.Sircar,DerivativesinFinancialMarketswithStochasticVolatility,CambridgeUniversityPress,Cambridge,UK,2000]),weconsideredthesituationwhenthevolatilityisfastmeanreverting.Usingasingularperturbationexpansionwederivedanapproximationforoptionprices.Wealsoprovidedacalibr
5、ationmethodusingobservedoptionpricesasrepresentedbytheso-calledtermstructureofimpliedvolatility.Ouranalysisofmarketdata,however,showstheneedforintroducingalsoaslowlyvaryingfactorinthemodelforthestochasticvolatility.Thecombinationofregularandsingularperturbationsapproachthatwesetforthinth
6、ispaperdealswiththiscase.Theresultingapproximationisstillindependentoftheparticulardetailsofthevolatilitymodelandgivesmore?exibilityintheparametrizationoftheimpliedvolatilitysurface.Inparticular,theintroductionoftheslowfactorgivesamuchbetter?tforoptionswithlongermaturities.Weuseoptiondat
7、atoillustrateourresultsandshowhowexoticoptionpricesalsocanbeapproximatedusingourmultiscaleperturbationapproach.Keywords.stochasticvolatility,timescales,singularregularperturbations,optionpricing,impliedvolatilityAMSsubjectclassi?cations.34E10,34E13,35K20,60H15,60H30,60J60