multiscale stochastic volatility asymptotics

multiscale stochastic volatility asymptotics

ID:7294810

大?。?40.89 KB

頁數(shù):21頁

時(shí)間:2018-02-10

multiscale stochastic volatility asymptotics_第1頁
multiscale stochastic volatility asymptotics_第2頁
multiscale stochastic volatility asymptotics_第3頁
multiscale stochastic volatility asymptotics_第4頁
multiscale stochastic volatility asymptotics_第5頁
資源描述:

《multiscale stochastic volatility asymptotics》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。

1、MULTISCALEMODEL.SIMUL.c2003SocietyforIndustrialandAppliedMathematicsVol.2,No.1,pp.22–42MULTISCALESTOCHASTICVOLATILITYASYMPTOTICS?JEAN-PIERREFOUQUE?,GEORGEPAPANICOLAOU?,RONNIESIRCAR§,ANDKNUTSOLNA?Abstract.Inthispaperweproposetouseacombinationofregularandsingularperturbationstoanalyzepara

2、bolicPDEsthatariseinthecontextofpricingoptionswhenthevolatilityisastochasticprocessthatvariesonseveralcharacteristictimescales.TheclassicalBlack–ScholesformulagivesthepriceofcalloptionswhentheunderlyingisageometricBrownianmotionwithaconstantvolatility.Theunderlyingmightbethepriceofastock

3、oranindex,say,andaconstantvolatilitycorrespondstoa?xedstandarddeviationfortherandom?uctuationsinthereturnsoftheunderlying.Modernmarketphenomenamakeitimportanttoanalyzethesituationwhenthisvolatilityisnot?xedbutratherisheterogeneousandvarieswithtime.Inpreviouswork(see,forinstance,[J.P.Fouq

4、ue,G.Papanicolaou,andK.R.Sircar,DerivativesinFinancialMarketswithStochasticVolatility,CambridgeUniversityPress,Cambridge,UK,2000]),weconsideredthesituationwhenthevolatilityisfastmeanreverting.Usingasingularperturbationexpansionwederivedanapproximationforoptionprices.Wealsoprovidedacalibr

5、ationmethodusingobservedoptionpricesasrepresentedbytheso-calledtermstructureofimpliedvolatility.Ouranalysisofmarketdata,however,showstheneedforintroducingalsoaslowlyvaryingfactorinthemodelforthestochasticvolatility.Thecombinationofregularandsingularperturbationsapproachthatwesetforthinth

6、ispaperdealswiththiscase.Theresultingapproximationisstillindependentoftheparticulardetailsofthevolatilitymodelandgivesmore?exibilityintheparametrizationoftheimpliedvolatilitysurface.Inparticular,theintroductionoftheslowfactorgivesamuchbetter?tforoptionswithlongermaturities.Weuseoptiondat

7、atoillustrateourresultsandshowhowexoticoptionpricesalsocanbeapproximatedusingourmultiscaleperturbationapproach.Keywords.stochasticvolatility,timescales,singularregularperturbations,optionpricing,impliedvolatilityAMSsubjectclassi?cations.34E10,34E13,35K20,60H15,60H30,60J60

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。