variable selection in robust joint mean andcovariance model for longitudinal data analysis

variable selection in robust joint mean andcovariance model for longitudinal data analysis

ID:7511117

大?。?61.85 KB

頁數(shù):17頁

時(shí)間:2018-02-16

variable selection in robust joint mean andcovariance model for longitudinal  data analysis_第1頁
variable selection in robust joint mean andcovariance model for longitudinal  data analysis_第2頁
variable selection in robust joint mean andcovariance model for longitudinal  data analysis_第3頁
variable selection in robust joint mean andcovariance model for longitudinal  data analysis_第4頁
variable selection in robust joint mean andcovariance model for longitudinal  data analysis_第5頁
資源描述:

《variable selection in robust joint mean andcovariance model for longitudinal data analysis》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。

1、StatisticaSinica24(2014),515-531doi:http://dx.doi.org/10.5705/ss.2011.251VARIABLESELECTIONINROBUSTJOINTMEANANDCOVARIANCEMODELFORLONGITUDINALDATAANALYSISXueyingZheng1,WingKamFung2andZhongyiZhu11FudanUniversityand2TheUniversityofHongKongAbstract:Inlongitudinaldataanalysis,acorrectspeci?cationofthewith

2、in-subjectcovariancematrixcultivatesane?cientestimationformeanregressioncoe?cients.Inthisarticle,weconsiderrobustvariableselectionmethodinajointmeanandcovariancemodel.Weproposeasetofpenalizedrobustgeneralizedestimatingequationstosimultaneouslyestimatethemeanregressioncoe?cients,thegeneral-izedautore

3、gressivecoe?cients,andinnovationvariancesintroducedbythemodi?edCholeskydecomposition.Thesetofestimatingequationsselectimportantcovari-atevariablesinbothmeanandcovariancemodelstogetherwiththeestimatingprocedure.Undersomeregularityconditions,wedeveloptheoraclepropertyoftheproposedrobustvariableselecti

4、onmethod.Finally,asimulationstudyandadetaileddataanalysisarecarriedouttoassessandillustratethesmallsampleper-formance;theyshowthattheproposedmethodperformsfavorablybycombiningtherobustifyingandpenalizedestimatingtechniquestogetherinthejointmeanandcovariancemodel.Keywordsandphrases:Covariancematrix,p

5、enalizedgeneralizedestimatingequa-tion,longitudinaldata,modi?edcholeskydecomposition,robustness,variablese-lection.1.IntroductionLongitudinaldataarisemoreandmorefrequentlyinavarietyofscienti?cdomainsthatseekinsightfulandcomprehensiveresearchinabranchofstatisti-calmodeling.Di?erentfromothertypesofdat

6、a,weoftenassumeindependenceamongdistinctsubjectsbutdependencewithineachsubject;within-subjectcor-relationraisesafundamentalchallengefortheanalysisoflongitudinaldata.LiangandZeger(1986),amilestoneinthedevelopmentofmethodologyforlongitudinaldataanalysis,proposedgeneralizedestimatingequations(GEE)fores

7、timationofgeneralizedlinearregressioncoe?cients.Themainadvantageoftheirmethodisthatevenwhenthewithin-subjectcorrelationistreatedasanuisanceparameterwithanassumedparsimoniousstructure,GEEstillbringsabo

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。