資源描述:
《基于matlab的svr回歸模型的設(shè)計與實現(xiàn)畢業(yè)論文》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、基于MATLAB的SVR回歸模型的設(shè)計與實現(xiàn)TheDesignandImplementationofSVRRegressionModelBasedonMATLAB摘要支持向量機(jī)是根據(jù)統(tǒng)計學(xué)習(xí)理論提出的一種新的學(xué)習(xí)方法,近年來受到了國內(nèi)外學(xué)術(shù)界的廣泛重視,并已在模式識別和函數(shù)估計中得到廣泛應(yīng)用。支持向量機(jī)理論的最大特點是由有限的訓(xùn)練集樣本得到的小的誤差保證對獨立的測試集仍保持小的誤差。從而通過支持向量機(jī)(SVM)理論,可以建立支持向量回歸(SVR)預(yù)測模型,以解決各種實際問題?! VR算法是模式識別中應(yīng)用比較廣泛的算法模型之一,它是支持向量機(jī)在函數(shù)逼近和回歸估計
2、中的應(yīng)用。在SVR回歸分析中,使用支持向量機(jī)可以使回歸函數(shù)盡量平滑,其泛化能力強(qiáng)。 本文論述了支持向量回歸的基本原理和思想,介紹了支持向量回歸算法以及所用到的幾種常見的核函數(shù)(即線性內(nèi)核、多項式內(nèi)核、徑向基函數(shù)內(nèi)核、高斯內(nèi)核)。本設(shè)計主要實現(xiàn)的功能有:數(shù)據(jù)集的創(chuàng)建、內(nèi)核函數(shù)的選取、參數(shù)的設(shè)置、訓(xùn)練集的回歸、數(shù)據(jù)集的保存與打開。通過不同核函數(shù)的選取以及相應(yīng)參數(shù)的設(shè)置對輸入數(shù)據(jù)集進(jìn)行回歸。此模型主要解決非線性回歸模型的預(yù)測。通過實驗改變各個參數(shù)的不同取值對訓(xùn)練集進(jìn)行回歸,并分別統(tǒng)計出支持向量的個數(shù),回歸性能,程序運行時間。最后對回歸的結(jié)果進(jìn)行分析,得出各參數(shù)對回歸
3、性能的影響。關(guān)鍵詞:支持向量回歸;訓(xùn)練算法;核函數(shù);線性判別ABSTRACTSupportvectormachine(SVM)isanewmethodofstudybasedonstatisticallearningtheorywhichhasattractedextensiveattentionsbyacademiccirclesbothathomeandabroadinrecentyears.Ithasbeenwidelyusedinpatternrecognitionandfunctionestimation.Thebiggestcharacteristi
4、cofsupportvectormachine(SVM)theoryisthatasmallerrorlimitedbythetrainingsetofsamplecanensuretheindependenttestset’ssmallerror.Thusasupportvectorregression(SVR)forecastingmodelcanbebuiltbysupportvectormachine(SVM)theoryanditcansolvevariouspracticalproblems.SVRalgorithmmodelisoneofpatte
5、rnrecognitionalgorithm,whichismorewidelyusedinapproximationoffunctionandtheapplicationoftheregressionestimate.IntheSVRregressionanalysis,usingsupportvectormachine(SVM)cansmoothregressionfunctionasfaraspossible.Itsgeneralizationabilityisstrong.Thispaperdiscussesthebasicprincipleofsupp
6、ortvectorregressionandintroducessupportvectorregressionalgorithmandseveralcommonkernelfunctions(thelinearkernel,polynomialkernelandradialbasisfunction(RBF)kernel,theGaussiankerneletc.).Thisessaysuccessfullymakesthesefunctionswork:thecreationofdatasets,theselectionofkernelfunction,par
7、ametersettings,returnofthetrainingset,thepreservationandopenofthedataset.Weaccomplishthereturnofinputofdatasetthroughtheselectionofdifferentkernelfunctionsandthesettingofcorrespondingparameter.Thismodelismainlytosolvethenonlinearregressionmodelprediction.Then,thesameissueisdonethroug
8、htheexperime