資源描述:
《基于rbf神經(jīng)網(wǎng)絡(luò)整定的pid控制器設(shè)計(jì)及及認(rèn)真_畢業(yè)設(shè)計(jì)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、華北電力大學(xué)科技學(xué)院本科畢業(yè)設(shè)計(jì)(摘要)基于RBF神經(jīng)網(wǎng)絡(luò)整定的PID控制器設(shè)計(jì)及仿真摘要目前,因?yàn)镻ID控制具有簡(jiǎn)單的控制結(jié)構(gòu),可通過(guò)調(diào)節(jié)比例積分和微分取得基本滿意的控制性能,在實(shí)際應(yīng)用中又較易于整定,所以廣泛應(yīng)用于過(guò)程控制和運(yùn)動(dòng)控制中,尤其在可建立精確模型的確定性控制系統(tǒng)中應(yīng)用比較多。然而隨著現(xiàn)代工業(yè)過(guò)程的日益復(fù)雜,對(duì)控制要求的逐步增高(如穩(wěn)定性、準(zhǔn)確性、快速性等),經(jīng)典控制理論面臨著嚴(yán)重的挑戰(zhàn)。對(duì)工業(yè)控制領(lǐng)域中非線性系統(tǒng),采用傳統(tǒng)PID控制不能獲得滿意的控制效果。采用基于梯度下降算法優(yōu)化R
2、BF神經(jīng)網(wǎng)絡(luò),它將神經(jīng)網(wǎng)絡(luò)和PID控制技術(shù)融為一體,既具有常規(guī)PID控制器結(jié)構(gòu)簡(jiǎn)單、物理意義明確的優(yōu)點(diǎn),同時(shí)又具有神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)、自適應(yīng)的功能。因此,本文通過(guò)對(duì)RBF神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和計(jì)算方法的學(xué)習(xí),設(shè)計(jì)一個(gè)基于RBF神經(jīng)網(wǎng)絡(luò)整定的PID控制器,構(gòu)建其模型,進(jìn)而編寫(xiě)M語(yǔ)言程序。運(yùn)用MATLAB軟件對(duì)所設(shè)計(jì)的RBF神經(jīng)網(wǎng)絡(luò)整定的PID控制算法進(jìn)行仿真研究。然后再進(jìn)一步通過(guò)仿真實(shí)驗(yàn)數(shù)據(jù),研究本控制系統(tǒng)的穩(wěn)定性,魯棒性,抗干擾能力等。關(guān)鍵詞:PID;RBF神經(jīng)網(wǎng)絡(luò);參數(shù)整定Ⅱ華北電力大學(xué)科技學(xué)院本科畢業(yè)
3、設(shè)計(jì)(摘要)SETTINGOFTHEPIDCONTROLLERBASEDONRBFNEURALNETWORKDESIGNANDSIMULATIONAbstractAtpresent,becausethePIDcontrolhasasimplecontrolstructure,throughadjustingtheproportionalintegralanddifferentialgainbasicsatisfactorycontrolperformance,andisrelativelyeas
4、ytosettinginpracticalapplication,sowidelyusedinprocesscontrolandmotioncontrol,especiallyintheaccuratemodelcanbebuiltmoredeterministiccontrolsystemapplication.Withtheincreasinglycomplexofthemodernindustrialprocess,however,increasedstepbysteptocontrolr
5、equirements(e.g.,stability,accuracyandquickness,etc.),classicalcontroltheoryisfacedwithseverechallenges.Non-linearsystemsinindustrialcontrolfield,usingthetraditionalPIDcontrolcannotobtainsatisfactorycontroleffect.OptimizedRBFneuralnetworkbasedongradi
6、entdescentalgorithm,itwillbeintegratedneuralnetworkandPIDcontroltechnology,withaconventionalPIDcontrollerhassimplestructure,physicalmeaningisclearadvantages,atthesametimewithneuralnetworkself-learning,adaptivefunction.Therefore,thisarticlethroughtoth
7、eRBFneuralnetworkstructureandthecalculationmethodoflearning,todesignasettingofthePIDcontrollerbasedonRBFneuralnetwork,constructsitsmodel,andthenwriteMlanguageprogram.UsingtheMATLABsoftwaretodesigntheRBFneuralnetworksettingofPIDcontrolalgorithmsimulat
8、ionresearch.Dataandthenfurtherthroughsimulationexperiment,thecontrolsystemstability,robustness,anti-interferenceability,etc.Keywords:PID;RBFneuralnetwork;ParametersettingⅡ華北電力大學(xué)科技學(xué)院本科畢業(yè)設(shè)計(jì)(目錄)目錄摘要ⅠAbstractⅡ1緒論11.1課題研究背景及意義11.2神經(jīng)網(wǎng)絡(luò)的發(fā)展歷史21.3本課題研究的主要內(nèi)容52