Data Quality from Crowdsourcing(conference)

Data Quality from Crowdsourcing(conference)

ID:18429910

大?。?80.03 KB

頁數(shù):73頁

時間:2018-09-17

Data Quality from Crowdsourcing(conference)_第1頁
Data Quality from Crowdsourcing(conference)_第2頁
Data Quality from Crowdsourcing(conference)_第3頁
Data Quality from Crowdsourcing(conference)_第5頁
資源描述:

《Data Quality from Crowdsourcing(conference)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫

1、NAACLHLT2009ActiveLearningforNaturalLanguageProcessing(ALNLP-09)ProceedingsoftheWorkshopJune5,2009Boulder,ColoradoProductionandManufacturingbyOmnipressInc.2600AndersonStreetMadison,WI53707USAEndorsedbythefollowingACLSpecialInterestGroups:?SIGNLL,SpecialInterestGroupforNaturalLanguageLearning

2、?SIGANN,SpecialInterestGroupforAnnotationc2009TheAssociationforComputationalLinguisticsOrdercopiesofthisandotherACLproceedingsfrom:AssociationforComputationalLinguistics(ACL)209N.EighthStreetStroudsburg,PA18360USATel:+1-570-476-8006Fax:+1-570-476-0860acl@aclweb.orgISBN978-1-932432-40-4iiIntr

3、oductionWelcometotheworkshoponActiveLearningforNaturalLanguageProcessing!Westartedorganizingthisworkshopinmid-2008afterstrongencouragementinresponsetosomeofourownworkinthearea.Aswegatheredmembersoftheprogramcommittee,thetimelinessofthetopicresonatedwithseveralofthem:thegrowingbodyofknowledge

4、onactivelearningandonactivelearningforNLPinparticularmakesthistopiconeworthexploringinafocusedworkshopratherthaninisolatedpapersinoccasional,far-?ungconferences.Labeleddataisaprerequisiteformanypopularalgorithmsinnaturallanguageprocessingandmachinelearning.Whileitispossibletoobtainlargeamoun

5、tsofannotateddataforwell-studiedlanguagesinwell-studieddomainsandwell-studiedproblems,labeleddataarerarelyavailableforlesscommonlanguages,domains,orproblems.Unfortunately,obtaininghumanannotationsforlinguisticdataislabor-intensiveandtypicallythecostliestpartoftheacquisitionofanannotatedcorpu

6、s.Ithasbeenshownbeforethatactivelearningcanbeemployedtoreduceannotationcostsbutnotattheexpenseofquality.WhilediverseworkoverthepastdecadehasdemonstratedthepossibleadvantagesofactivelearningforcorpusannotationandNLPapplications,activelearningisnotwidelyusedinmanyongoingdataannotationtasks.Muc

7、hofthemachinelearningliteratureonthetopichasfocusedonactivelearningforclassi?cationproblemswithlessattentiondevotedtothekindsofproblemsencounteredinNLP.Relatedtopicssuchasdistributed“humancomputation”,cost-sensitivemachinelearning,andsemi-supervise

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。