Using crowdsourcing, big data and machine (2013)

Using crowdsourcing, big data and machine (2013)

ID:18440542

大小:1.87 MB

頁數(shù):15頁

時間:2018-09-18

Using crowdsourcing, big data and machine (2013)_第1頁
Using crowdsourcing, big data and machine (2013)_第2頁
Using crowdsourcing, big data and machine (2013)_第3頁
Using crowdsourcing, big data and machine (2013)_第4頁
Using crowdsourcing, big data and machine (2013)_第5頁
資源描述:

《Using crowdsourcing, big data and machine (2013)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、CollectiveMind:cleaninguptheresearchandexperimentationmessincomputerengineeringusingcrowdsourcing,bigdataandmachinelearningGrigoriFursinINRIA,FranceGrigori.Fursin@cTuning.orgAbstractSoftwareandhardwareco-designandoptimizationofHPCsystemshasbe-comeint

2、olerablycomplex,ad-hoc,timeconsuminganderrorproneduetoenor-mousnumberofavailabledesignandoptimizationchoices,complexinteractionsbetweenallsoftwareandhardwarecomponents,andmultiplestrictrequirementsplacedonperformance,powerconsumption,size,reliability

3、andcost.Wepresentournovellong-termholisticandpracticalsolutiontothisproblembasedoncustomizable,plugin-based,schema-free,heterogeneous,open-sourceCollectiveMindrepositoryandinfrastructurewithuni?edwebinterfacesandon-lineadvisesystem.Thiscollaborativef

4、rameworkdistributesanalysisandmulti-objectiveoff-lineandon-lineauto-tuningofcomputersystemsamongmanypar-ticipantswhileutilizinganyavailablesmartphone,tablet,laptop,clusterordatacenter,andcontinuouslyobserving,classifyingandmodelingtheirrealisticbehav

5、-ior.AnyunexpectedbehaviorisanalyzedusingshareddataminingandpredictivemodelingpluginsorexposedtothecommunityatcTuning.orgforcollaborativeexplanation,top-downcomplexityreduction,incrementalproblemdecompositionanddetectionofcorrelatingprogram,architect

6、ureorrun-timeproperties(features).hal-00850880,version1-10Aug2013Graduallyincreasingoptimizationknowledgehelpstocontinuouslyimproveop-timizationheuristicsofanycompiler,predictoptimizationsfornewprogramsorsuggestef?cientrun-time(online)tuningandadapta

7、tionstrategiesdependingonend-userrequirements.Wedecidedtoshareallourpastresearchartifactsinclud-inghundredsofcodelets,numericalapplications,datasets,models,universalex-perimentalanalysisandauto-tuningpipelines,self-tuningmachinelearningbasedmetacompi

8、ler,anduni?edstatisticalanalysisandmachinelearningpluginsinapublicrepositorytoinitiatesystematic,reproducibleandcollaborativeresearch,developmentandexperimentationwithanewpublicationmodelwhereexperi-mentsandtechniquesarevalidated,rankedandimprovedbyt

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。