資源描述:
《孔群加工路徑規(guī)劃問題的進(jìn)化求解》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、第11卷第5期計(jì)算機(jī)集成制造系統(tǒng)Vol.11No.52005年5月ComputerIntegratedManufacturingSystemsMay2005文章編號(hào):1006-5911(2005)05-0682-08孔群加工路徑規(guī)劃問題的進(jìn)化求解1,22肖人彬,陶振武(1.華中科技大學(xué)管理學(xué)院,湖北武漢430074;2.華中科技大學(xué)CAD中心,湖北武漢430074)摘要:孔群加工路徑規(guī)劃對(duì)于提高多孔類零件的加工效率和質(zhì)量具有重要意義。建立了兩個(gè)孔群加工路徑規(guī)劃問題的數(shù)學(xué)模型,分別歸納為單目標(biāo)和多目標(biāo)組合優(yōu)化問題,并引入進(jìn)化蟻群系統(tǒng)算法和人工免
2、疫算法求解單目標(biāo)組合優(yōu)化問題。這兩種算法均能有效防止解空間的/組合爆炸0問題,計(jì)算復(fù)雜度的階次低于Hopfield神經(jīng)網(wǎng)絡(luò)算法,且性能優(yōu)于Hopfield算法。采用多目標(biāo)解的快速排序技術(shù)分別對(duì)進(jìn)化蟻群系統(tǒng)算法和人工免疫算法加以改進(jìn),開發(fā)出多目標(biāo)進(jìn)化蟻群系統(tǒng)算法和多目標(biāo)人工免疫算法。分析表明,改進(jìn)算法不增加原算法的計(jì)算復(fù)雜度,能直接用于求解多目標(biāo)組合優(yōu)化問題而無需事先給出目標(biāo)權(quán)值向量,并能一次運(yùn)行求得問題的多個(gè)Pareto最優(yōu)解。關(guān)鍵詞:孔群加工路徑規(guī)劃;多目標(biāo)優(yōu)化;組合優(yōu)化;蟻群優(yōu)化;人工免疫系統(tǒng)中圖分類號(hào):TP39;TP181.72文獻(xiàn)標(biāo)識(shí)
3、碼:ASolutiontoholesmachiningpathplanningbyevolutionarymethods1,22XIAORen-bin,TAOZhen-wu(1.Sch.ofManagement,HuazhongUniv.ofS&T,Wuhan430074,China;2.CADCent.,HuazhongUniv.ofS&T,Wuhan430074,China)Abstract:HolesMachiningPathPlanningissignificanttoimprovethemachiningefficiencyandq
4、ualityofmulti-holeparts.TwomathematicalmodelsofHolesMachiningPathPlanningproblemswereconstructed,whichcouldbeinducedtosingleobjectiveandmulti-objectivecombinatorialoptimizationproblemsrespectively.Twonovelevolu-tionaryalgorithms,EvolutionaryAntColonySystemalgorithmandArtifi
5、cialImmunealgorithm,wereintroducedtosolvethesingleobjectivecombinatorialoptimizationproblems.AnalysisindicatedthatthesetwoalgorithmscouldresistthecombinatorialexplosioninsolutionspaceeffectivelyandhadlowercomputationalcomplexityandhigherperformancecomparedwiththeHopfieldalg
6、orithm.ByimprovingtheEvolutionaryAntColonySystemalgorithmandArtificialImmunealgorithmwiththeTechniqueofFastSolutionSorting,theMulti-objectiveEvolutionaryAntColonySystemalgorithmandMulti-objectiveArtificialImmunealgorithmwereproposed.Analysisindicatedthattheimprovedalgorithm
7、shadnotincreasedthecomputationalcomplexityoftheoriginalalgorithmsandhadresolvedthemulti-objectiveoptimizationproblemdirectlywithoutfixingtheobjectiveweightvectorinadvance.Inadditio-iin,ithadobtainedseveralParetosolutionsinonerun.Keywords:holesmachiningpathplanning;multi-obj
8、ectiveoptimization;combinatorialoptimization;antcolonyoptimization;artificialimmun