DAILY STREAMFLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS

DAILY STREAMFLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS

ID:37657575

大?。?16.80 KB

頁(yè)數(shù):12頁(yè)

時(shí)間:2019-05-27

DAILY STREAMFLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS_第1頁(yè)
DAILY STREAMFLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS_第2頁(yè)
DAILY STREAMFLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS_第3頁(yè)
DAILY STREAMFLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS_第4頁(yè)
DAILY STREAMFLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS_第5頁(yè)
資源描述:

《DAILY STREAMFLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)

1、DAILYSTREAMFLOWFORECASTINGUSINGARTIFICIALNEURALNETWORKSEmrahDO?ANResearchAssist.,SakaryaUniversity,CivilEngineeringDepartment,emrahd@sakarya.edu.trSabahattinI?IKAssist.Prof.SakaryaUniversity,CivilEngineeringDepartment,sisik@sakarya.edu.trTar?kTOLUKMSc.CivilEng.,University,CivilEngineeri

2、ngDepartment,nftoluk@yahoo.comMehmetSANDALCIAssist.Prof.SakaryaUniversityCivilEngineeringDepartment,sandalci@sakarya.edu.trABSTRACTForecastingofstreamflowsisrequiredforproperwaterresourcesplanningandmanagement.Thisstudypresentstheapplicationandcomparisonofartificialneuralnetwork(ANN)app

3、roachesandautoregressive(AR)method.ANNandAR(4)methodsareemployedtopredictdailystreamflowsat?iftelerstationintheSakaryaRiver.ThreedifferentANNmethodssuchasfeed-forwardbackpropagationneuralnetworks(FFNN),radialbasisneuralnetworks(RBNN),andrecurrentneuralnet-works(RNN)areselectedinmodeling

4、hydrologicaltime-seriesandgeneratingsyn-theticstreamflows.Dailystreamflowsof?iftelerbetween1989-1991(1091variables)andbetween1992-1993(486variables)wereusedfortraningandtestperiods,respec-tively.DeterminationcoefficientsofAR(4),FFNN,RBNN,andRNNmodelswerefoundas0.7547,0.9495,0.9479,and0.

5、9991,respectively.Finally,RNNmodelyieldsthebestresultwithadeterminationcoefficientof0.9991.Keywords:Streamflowmodelling,Autoregressivemodel,Artificalneuralnet-workINTRODUCTIONForecastingofstreamflowsarevitalimportantforfloodcaution,operationofflood-control-purposedreservoir,determinatio

6、nofriverwaterpotential,productionofhydroelectricenergy,allocationofdomesticandirrigationwaterindroughtsea-sons,andnavigationplanninginrivers[Bayaz?t,1988].RIVERBASINFLOODMANAGEMENT449Stochasticstreamflowmodelsarecommonlyusedinhydrology.Recently,artifi-calneuralnetwork(ANN)modelsarealsoe

7、mployedtowaterresourcesandhydrol-ogyproblems[Gavinet.al.,2005].Anumberofstudieshavebeenreportedinlitera-ture.Someofthemaregiventhebelow.O?uz[1983]developedamathematicalmodelthatsimulatesmovementsofyearlyflows.Karab?rkandKahya[1998]obtainedmathematicalexpressionsofmul-tivariatep

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。