資源描述:
《LONG MEMORY STOCHASTIC VOLATILITY IN OPTION PRICING》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、May3,200514:8WSPC-104-IJTAFSPI-J07100301InternationalJournalofTheoreticalandAppliedFinanceVol.8,No.3(2005)381–392cWorldScienti?cPublishingCompanyLONGMEMORYSTOCHASTICVOLATILITYINOPTIONPRICINGSERGEIFEDOTOV?andABBYTANSchoolofMathematics,TheUniversityofManchesterM601QD,
2、UK?sergei.fedotov@manchester.ac.ukReceived16March2004Accepted21September2004Theaimofthispaperistopresentastochasticmodelthataccountsforthee?ectsofalong-memoryinvolatilityonoptionpricing.ThestartingpointisthestochasticBlack–Scholesequationinvolvingvolatilitywithlong-r
3、angedependence.Wede?nethestochasticoptionpriceasasumofclassicalBlack–Scholespriceandrandomdeviationdescribingtheriskfromtherandomvolatility.Byusingthefactthattheoptionpriceandrandomvolatilitychangeondi?erenttimescales,wederivetheasymptoticequationforthisdeviationinvo
4、lvingfractionalBrownianmotion.Thesolutiontothisequationallowsusto?ndthepricingbandsforoptions.Keywords:Longmemory;stochasticvolatility;optionpricing.1.IntroductionOverthelastfewyears,self-similarityandlong-rangedependencehavebecomeimportantconceptsinanalyzingthe?nanc
5、ialtimeseries[24,26].Thereisstrongevidencethatthereturn,rt,haslittleornoautocorrelation,whereasitssquare,r2,orabsolutereturn,
6、r
7、,exhibitnoticeableautocorrelation[6].ThisphenomenonttcanbedescribedbytheARCH(p)model[14]oritsGARCH(p,q)extension[4].However,theexponentiald
8、ecayforλ=cov(r2,r2)isbelievedtobetoofasttostt+sdescribecorrectlythepersistentdependencebetweentheseriesobservationsasthetimelagincreases.Itturnsout[3,27]thatthemodelswithhyperbolicdecaywhichhaveslowlydecayingcovariancesprovidebetter?ttingto?nancialtimeseries.Thechara
9、cteristicfeatureofthesemodelsisthattheircovarianceλshasthepowerlawdecays2d?1(010、ay3,200514:8WSPC-104-IJTAFSPI-J07100301382S.Fedotov&A.Tanthecorrelationsdecayveryslowlytozero.Letusnotethattheseriesissaidtohavesho