Robust Real-Time Face Detection

Robust Real-Time Face Detection

ID:40092089

大小:316.62 KB

頁數(shù):18頁

時(shí)間:2019-07-20

Robust Real-Time Face Detection_第1頁
Robust Real-Time Face Detection_第2頁
Robust Real-Time Face Detection_第3頁
Robust Real-Time Face Detection_第4頁
Robust Real-Time Face Detection_第5頁
Robust Real-Time Face Detection_第6頁
Robust Real-Time Face Detection_第7頁
Robust Real-Time Face Detection_第8頁
Robust Real-Time Face Detection_第9頁
Robust Real-Time Face Detection_第10頁
資源描述:

《Robust Real-Time Face Detection》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、InternationalJournalofComputerVision57(2),137–154,2004c2004KluwerAcademicPublishers.ManufacturedinTheNetherlands.RobustReal-TimeFaceDetectionPAULVIOLAMicrosoftResearch,OneMicrosoftWay,Redmond,WA98052,USAviola@microsoft.comMICHAELJ.JONESMitsubishiElectricResearch

2、Laboratory,201Broadway,Cambridge,MA02139,USAmjones@merl.comReceivedSeptember10,2001;RevisedJuly10,2003;AcceptedJuly11,2003Abstract.Thispaperdescribesafacedetectionframeworkthatiscapableofprocessingimagesextremelyrapidlywhileachievinghighdetectionrates.Therearethr

3、eekeycontributions.The?rstistheintroductionofanewimagerepresentationcalledthe“IntegralImage”whichallowsthefeaturesusedbyourdetectortobecomputedveryquickly.Thesecondisasimpleandef?cientclassi?erwhichisbuiltusingtheAdaBoostlearningalgo-rithm(FreundandSchapire,1995)

4、toselectasmallnumberofcriticalvisualfeaturesfromaverylargesetofpotentialfeatures.Thethirdcontributionisamethodforcombiningclassi?ersina“cascade”whichallowsback-groundregionsoftheimagetobequicklydiscardedwhilespendingmorecomputationonpromisingface-likeregions.Aset

5、ofexperimentsinthedomainoffacedetectionispresented.Thesystemyieldsfacedetectionperfor-mancecomparabletothebestprevioussystems(SungandPoggio,1998;Rowleyetal.,1998;SchneidermanandKanade,2000;Rothetal.,2000).Implementedonaconventionaldesktop,facedetectionproceedsat1

6、5framespersecond.Keywords:facedetection,boosting,humansensing1.Introductionencesinvideosequences,orpixelcolorincolorim-ages,havebeenusedtoachievehighframerates.OurThispaperbringstogethernewalgorithmsandinsightssystemachieveshighframeratesworkingonlywithtoconstruc

7、taframeworkforrobustandextremelyrapidtheinformationpresentinasinglegreyscaleimage.visualdetection.TowardthisendwehaveconstructedThesealternativesourcesofinformationcanalsobein-afrontalfacedetectionsystemwhichachievesdetec-tegratedwithoursystemtoachieveevenhigherf

8、rametionandfalsepositiverateswhichareequivalenttorates.thebestpublishedresults(SungandPoggio,1998;Therearethreemaincontributionsofourfacedetec-Rowleyetal.,1998

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。