[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification

[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification

ID:40702388

大?。?03.36 KB

頁(yè)數(shù):6頁(yè)

時(shí)間:2019-08-06

[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第1頁(yè)
[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第2頁(yè)
[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第3頁(yè)
[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第4頁(yè)
[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification_第5頁(yè)
資源描述:

《[IJCAI 2011 Ciresan] Flexible, high performance convolutional neural networks for image classification》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、ProceedingsoftheTwenty-SecondInternationalJointConferenceonArtificialIntelligenceFlexible,HighPerformanceConvolutionalNeuralNetworksforImageClassi?cationDanC.Cires?an,UeliMeier,JonathanMasci,LucaM.Gambardella,JurgenSchmidhuber¨IDSIA,USIandSUPSIGalleria2,6928Manno-Lu

2、gano,Switzerland{dan,ueli,jonathan,luca,juergen}@idsia.chAbstract(CNNs)[LeCunetal.,1998;Behnke,2003;Simardetal.,2003],whoseweights(?lters)arerandomlyinitializedandWepresentafast,fullyparameterizableGPUim-changedinasupervisedwayusingback-propagation(BP).plementationo

3、fConvolutionalNeuralNetworkDespitethehardwareprogressofthepastdecades,compu-variants.Ourfeatureextractorsareneithercare-tationalspeedisstillalimitingfactorforCNNarchitecturesfullydesignednorpre-wired,butratherlearnedincharacterizedbymanybuildingblockstypicallysetbyt

4、rialasupervisedway.Ourdeephierarchicalarchitec-anderror.Tosystematicallytesttheimpactofvariousarchi-turesachievethebestpublishedresultsonbench-tecturesonclassi?cationperformance,wepresentafastCNNmarksforobjectclassi?cation(NORB,CIFAR10)implementationonGraphicsProces

5、singUnits(GPUs).Previ-andhandwrittendigitrecognition(MNIST),withousGPUimplementationsofCNNs[Chellapillaetal.,2006;errorratesof2.53%,19.51%,0.35%,respectively.UetzandBehnke,2009;Strigletal.,2010]werehard-codedDeepnetstrainedbysimpleback-propagationper-tosatisfyGPUhar

6、dwareconstraintsorusegeneralpurposeformbetterthanmoreshallowones.Learningislibraries,whereasourimplementationis?exibleandfullyon-surprisinglyrapid.NORBiscompletelytrainedline(i.e.,weightupdatesaftereachimage).Anotableexcep-within?veepochs.TesterrorratesonMNISTtionis

7、[Jarrettetal.,2009]whoperformedathoroughanaly-dropto2.42%,0.97%and0.48%after1,3and17sisofthein?uenceofallbuildingblocksofamultistagear-epochs,respectively.chitectureonrecognitionperformance.OurimplementationallowsfortraininglargeCNNswithindaysinsteadofmonths,1Introd

8、uctionsuchthatwecaninvestigatethein?uenceofvariousstructuralThehumanvisualsystemef?cientlyrecognizesandlocal-parametersbyexploringlargepar

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶(hù)上傳,版權(quán)歸屬用戶(hù),天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶(hù)請(qǐng)聯(lián)系客服處理。