Learning to Compare Image Patches via Convolutional Neural Networks

Learning to Compare Image Patches via Convolutional Neural Networks

ID:40720132

大?。?.08 MB

頁數(shù):9頁

時間:2019-08-06

Learning to Compare Image Patches via Convolutional Neural Networks_第1頁
Learning to Compare Image Patches via Convolutional Neural Networks_第2頁
Learning to Compare Image Patches via Convolutional Neural Networks_第3頁
Learning to Compare Image Patches via Convolutional Neural Networks_第4頁
Learning to Compare Image Patches via Convolutional Neural Networks_第5頁
資源描述:

《Learning to Compare Image Patches via Convolutional Neural Networks》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術(shù)論文-天天文庫。

1、LearningtoCompareImagePatchesviaConvolutionalNeuralNetworksSergeyZagoruykoNikosKomodakisUniversiteParisEst,EcoledesPontsParisTechUniversiteParisEst,EcoledesPontsParisTechsergey.zagoruyko@imagine.enpc.frnikos.komodakis@enpc.frAbstractsimilarityInthispaperweshowhowtolearndirectlyfromimagedata(i.e.

2、,withoutresortingtomanually-designedfeatures)decisionnetworkageneralsimilarityfunctionforcomparingimagepatches,whichisataskoffundamentalimportanceformanycom-ConvNetputervisionproblems.Toencodesuchafunction,weoptforaCNN-basedmodelthatistrainedtoaccountforawidevarietyofchangesinimageappearance.Tot

3、hatend,weexploreandstudymultipleneuralnetworkarchitectures,whicharespeci?callyadaptedtothistask.Weshowthatsuchanapproachcansigni?cantlyoutperformthestate-of-patch1patch2the-artonseveralproblemsandbenchmarkdatasets.Figure1.Ourgoalistolearnageneralsimilarityfunctionforim-agepatches.Toencodesuchafu

4、nction,herewemakeuseofand1.Introductionexploreconvolutionalneuralnetworkarchitectures.Comparingpatchesacrossimagesisprobablyoneofthesoftware)largedatasetsthatcontainpatchcorrespondencesmostfundamentaltasksincomputervisionandimageanal-betweenimages[22].Thisbegsthefollowingquestion:canysis.Itisoft

5、enusedasasubroutinethatplaysanimportantwemakeproperuseofsuchdatasetstoautomaticallylearnroleinawidevarietyofvisiontasks.Thesecanrangefromasimilarityfunctionforimagepatches?low-leveltaskssuchasstructurefrommotion,widebaselineThegoalofthispaperistoaf?rmativelyaddressthematching,buildingpanoramas,a

6、ndimagesuper-resolution,abovequestion.Ouraimisthustobeabletogenerateauptohigher-leveltaskssuchasobjectrecognition,imagepatchsimilarityfunctionfromscratch,i.e.,withoutattempt-retrieval,andclassi?cationofobjectcategories,tomentioningtouseanymanuallydesignedfeaturesbutinsteaddi-afewcharacteristicex

7、amples.rectlylearnthisfunctionfromannotatedpairsofrawimageOfcourse,theproblemofdecidingiftwopatchescorre-patches.Tothatend,inspiredalsobytherecentadvancesinspondtoeachotherornotisquitechallengingasthereexistneuralarchitectur

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。