資源描述:
《Robust Tracking via Convolutional Networks without Learning_20151014082723》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫。
1、1RobustTrackingviaConvolutionalNetworkswithoutLearningKaihuaZhang,QingshanLiu,YiWu,andMing-HsuanYangAbstractDeepnetworkshavebeensuccessfullyappliedtovisualtrackingbylearningagenericrepresentationof?inefromnumeroustrainingimages.Howevertheof?inetrainin
2、gistime-consumingandthelearnedgenericrepresentationmaybelessdiscriminativefortrackingspeci?cobjects.Inthispaperwepresentthat,evenwithoutlearning,simpleconvolutionalnetworkscanbepowerfulenoughtodeveloparobustrepresentationforvisualtracking.Inthe?rstfra
3、me,werandomlyextractasetofnormalizedpatchesfromthetargetregionas?lters,whichde?neasetoffeaturemapsinthesubsequentframes.Thesemapsmeasuresimilaritiesbetweeneach?lterandtheusefullocalintensitypatternsacrossthetarget,therebyencodingitslocalstructuralinfo
4、rmation.Furthermore,allthemapsformtogetheraglobalrepresentation,whichmaintainstherelativegeometricpositionsofthelocalintensitypatterns,andhencetheinnergeometriclayoutofthetargetisalsowellpreserved.Asimpleandeffectiveonlinestrategyisadoptedtoupdatether
5、epresentation,allowingittorobustlyadapttotargetappearancevariations.Ourconvolutionnetworkshavesurprisinglylightweightstructure,yetperformfavorablyagainstseveralstate-of-the-artmethodsonalargebenchmarkdatasetwith50challengingvideos.IndexTermsVisualtrac
6、king,ConvolutionalNetworks,Deeplearning.arXiv:1501.04505v1[cs.CV]19Jan2015KaihuaZhang,QingshanLiuandYiWuarewithJiangsuKeyLaboratoryofBigDataAnalysisTechnology(B-DAT),NanjingUniversityofInformationScienceandTechnology.E-mail:fcskhzhang,qsliu,ywug@nuist
7、.edu.cn.Ming-HsuanYangiswithElectricalEngineeringandComputerScience,UniversityofCalifornia,Merced,CA,95344.E-mail:mhyang@ucmerced.edu.January20,2015DRAFT2Fig.1:Overviewoftheproposedrepresentation.Inputsamplesarewarpedintoacanonical3232images.We?rstra
8、ndomlyextractasetofnormalizedlocalpatchesfromthewarpedtargetregioninthe?rstframe,andthenusethemas?lterstoconvolveeachnormalizedsampleextractedfromsubsequentframes,resultinginasetoffeaturemaps.Finally,thefeaturemapsarestackedtogeneratethesample