cvpr18-Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks

cvpr18-Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks

ID:40713788

大?。?.13 MB

頁數(shù):11頁

時間:2019-08-06

cvpr18-Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks_第1頁
cvpr18-Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks_第2頁
cvpr18-Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks_第3頁
cvpr18-Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks_第4頁
cvpr18-Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks_第5頁
資源描述:

《cvpr18-Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在學術論文-天天文庫

1、WingLossforRobustFacialLandmarkLocalisationwithConvolutionalNeuralNetworksZhen-HuaFeng1JosefKittler1MuhammadAwais1PatrikHuber1Xiao-JunWu21CentreforVision,SpeechandSignalProcessing,UniversityofSurrey,GuildfordGU27XH,UK2SchoolofIoTEngineering,JiangnanUni

2、versity,Wuxi214122,China{z.feng,j.kittler,m.a.rana}@surrey.ac.uk,patrikhuber@gmail.com,wuxiaojun@jiangnan.edu.cnAbstract4040w=5,=0.5w=10,=0.5Wepresentanewlossfunction,namelyWingloss,forro-35w=5,=135w=10,=1w=5,=2w=10,=2bustfaciallandmarklocalisationwith

3、ConvolutionalNeu-30w=5,=330w=10,=3w=5,=4w=10,=4ralNetworks(CNNs).We?rstcompareandanalysedif-2525ferentlossfunctionsincludingL2,L1andsmoothL1.The2020analysisoftheselossfunctionssuggeststhat,forthetrain-1515ingofaCNN-basedlocalisationmodel,moreattention1

4、010shouldbepaidtosmallandmediumrangeerrors.Tothisend,wedesignapiece-wiselossfunction.Thenewloss55ampli?estheimpactoferrorsfromtheinterval(-w,w)by00-20-1001020-20-1001020switchingfromL1losstoamodi?edlogarithmfunction.(a)w=5(b)w=10Toaddresstheproblemofun

5、der-representationofsam-Figure1.OurWinglossfunction(Eq.5)plottedwithdifferentpleswithlargeout-of-planeheadrotationsinthetrainingparametersettings,wherewlimitstherangeofthenon-linearpartset,weproposeasimplebuteffectiveboostingstrategy,re-and?controlsthe

6、curvature.Bydesign,weamplifytheimpactofferredtoaspose-baseddatabalancing.Inparticular,wethesampleswithsmallandmediumrangeerrorstothenetworkdealwiththedataimbalanceproblembyduplicatingthetraining.minoritytrainingsamplesandperturbingthembyinject-ingrando

7、mimagerotation,boundingboxtranslationandotherdataaugmentationapproaches.Last,theproposedveryaccuratefaciallandmarklocalisationinconstrainedapproachisextendedtocreateatwo-stageframeworkforscenarios,evenusingtraditionalapproachessuchasAc-robustfacialland

8、marklocalisation.Theexperimentalre-tiveShapeModel(ASM)[7],ActiveAppearanceModelsultsobtainedonAFLWand300Wdemonstratethemerits(AAM)[8]andConstrainedLocalModel(CLM)[11].TheoftheWinglossfunction,andprovethesuperiorityoftheexistingchallenge

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。