No-Regret Learning in Bayesian Games貝葉斯博弈中的無后悔學習

No-Regret Learning in Bayesian Games貝葉斯博弈中的無后悔學習

ID:40849091

大?。?54.15 KB

頁數(shù):9頁

時間:2019-08-08

No-Regret Learning in Bayesian Games貝葉斯博弈中的無后悔學習_第1頁
No-Regret Learning in Bayesian Games貝葉斯博弈中的無后悔學習_第2頁
No-Regret Learning in Bayesian Games貝葉斯博弈中的無后悔學習_第3頁
No-Regret Learning in Bayesian Games貝葉斯博弈中的無后悔學習_第4頁
No-Regret Learning in Bayesian Games貝葉斯博弈中的無后悔學習_第5頁
資源描述:

《No-Regret Learning in Bayesian Games貝葉斯博弈中的無后悔學習》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫

1、No-RegretLearninginBayesianGamesJasonHartlineVasilisSyrgkanisNorthwesternUniversityMicrosoftResearchEvanston,ILNewYork,NYhartline@northwestern.eduvasy@microsoft.comEvaTardos′CornellUniversityIthaca,NYeva@cs.cornell.eduAbstractRecentprice-of-anarchyanalyse

2、sofgamesofcompleteinformationsuggestthatcoarsecorrelatedequilibria,whichcharacterizeoutcomesresultingfromno-regretlearningdynamics,havenear-optimalwelfare.Thisworkprovidestwomaintech-nicalresultsthatliftthisconclusiontogamesofincompleteinformation,a.k.a.,

3、Bayesiangames.First,near-optimalwelfareinBayesiangamesfollowsdirectlyfromthesmoothness-basedproofofnear-optimalwelfareinthesamegamewhentheprivateinformationispublic.Second,no-regretlearningdynamicsconvergetoBayesiancoarsecorrelatedequilibriumintheseincomp

4、leteinformationgames.TheseresultsareenabledbyinterpretationofaBayesiangameasastochasticgameofcompleteinformation.1IntroductionArecentcon?uenceofresultsfromgametheoryandlearningtheorygivesasimpleexplanationforwhygoodoutcomesinlargefamiliesofstrategically-c

5、omplexgamescanbeexpected.Theadvancecomesfrom(a)arelaxationtheclassicalnotionofequilibriumingamestoonethatcorrespondstotheoutcomeattainedwhenplayers’behaviorensuresasymptoticno-regret,e.g.,viastandardonlinelearningalgorithmssuchasweightedmajority,and(b)ane

6、xtensiontheoremthatshowsthatthestandardapproachforboundingthequalityofclassicalequilibriaautomaticallyimpliesthesameboundsonthequalityofno-regretequilibria.ThispapergeneralizestheseresultsfromstaticgamestoBayesiangames,forexample,auctions.Ourmotivationfor

7、consideringlearningoutcomesinBayesiangamesisthefollowing.Manyimpor-tantgamesmodelrepeatedinteractionsbetweenanuncertainsetofparticipants.Sponsoredsearch,andmoregenerally,onlinead-auctionmarketplaces,areimportantexamplesofsuchgames.Plat-formsarerunningmill

8、ionsofauctions,witheachindividualauctionslightlydifferentandofonlyverysmallvalue,butsuchmarketplaceshavehighenoughvolumetobethe?nancialbasisoflargeindustries.ThisonlineauctionenvironmentisbestmodeledbyarepeatedBayes

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。