No-Regret Learning in Bayesian Games貝葉斯博弈中的無(wú)后悔學(xué)習(xí)

No-Regret Learning in Bayesian Games貝葉斯博弈中的無(wú)后悔學(xué)習(xí)

ID:40849091

大?。?54.15 KB

頁(yè)數(shù):9頁(yè)

時(shí)間:2019-08-08

No-Regret Learning in Bayesian Games貝葉斯博弈中的無(wú)后悔學(xué)習(xí)_第1頁(yè)
No-Regret Learning in Bayesian Games貝葉斯博弈中的無(wú)后悔學(xué)習(xí)_第2頁(yè)
No-Regret Learning in Bayesian Games貝葉斯博弈中的無(wú)后悔學(xué)習(xí)_第3頁(yè)
No-Regret Learning in Bayesian Games貝葉斯博弈中的無(wú)后悔學(xué)習(xí)_第4頁(yè)
No-Regret Learning in Bayesian Games貝葉斯博弈中的無(wú)后悔學(xué)習(xí)_第5頁(yè)
資源描述:

《No-Regret Learning in Bayesian Games貝葉斯博弈中的無(wú)后悔學(xué)習(xí)》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、No-RegretLearninginBayesianGamesJasonHartlineVasilisSyrgkanisNorthwesternUniversityMicrosoftResearchEvanston,ILNewYork,NYhartline@northwestern.eduvasy@microsoft.comEvaTardos′CornellUniversityIthaca,NYeva@cs.cornell.eduAbstractRecentprice-of-anarchyanalyse

2、sofgamesofcompleteinformationsuggestthatcoarsecorrelatedequilibria,whichcharacterizeoutcomesresultingfromno-regretlearningdynamics,havenear-optimalwelfare.Thisworkprovidestwomaintech-nicalresultsthatliftthisconclusiontogamesofincompleteinformation,a.k.a.,

3、Bayesiangames.First,near-optimalwelfareinBayesiangamesfollowsdirectlyfromthesmoothness-basedproofofnear-optimalwelfareinthesamegamewhentheprivateinformationispublic.Second,no-regretlearningdynamicsconvergetoBayesiancoarsecorrelatedequilibriumintheseincomp

4、leteinformationgames.TheseresultsareenabledbyinterpretationofaBayesiangameasastochasticgameofcompleteinformation.1IntroductionArecentcon?uenceofresultsfromgametheoryandlearningtheorygivesasimpleexplanationforwhygoodoutcomesinlargefamiliesofstrategically-c

5、omplexgamescanbeexpected.Theadvancecomesfrom(a)arelaxationtheclassicalnotionofequilibriumingamestoonethatcorrespondstotheoutcomeattainedwhenplayers’behaviorensuresasymptoticno-regret,e.g.,viastandardonlinelearningalgorithmssuchasweightedmajority,and(b)ane

6、xtensiontheoremthatshowsthatthestandardapproachforboundingthequalityofclassicalequilibriaautomaticallyimpliesthesameboundsonthequalityofno-regretequilibria.ThispapergeneralizestheseresultsfromstaticgamestoBayesiangames,forexample,auctions.Ourmotivationfor

7、consideringlearningoutcomesinBayesiangamesisthefollowing.Manyimpor-tantgamesmodelrepeatedinteractionsbetweenanuncertainsetofparticipants.Sponsoredsearch,andmoregenerally,onlinead-auctionmarketplaces,areimportantexamplesofsuchgames.Plat-formsarerunningmill

8、ionsofauctions,witheachindividualauctionslightlydifferentandofonlyverysmallvalue,butsuchmarketplaceshavehighenoughvolumetobethe?nancialbasisoflargeindustries.ThisonlineauctionenvironmentisbestmodeledbyarepeatedBayes

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶(hù)上傳,版權(quán)歸屬用戶(hù),天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶(hù)請(qǐng)聯(lián)系客服處理。