Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經(jīng)網(wǎng)絡(luò)

Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經(jīng)網(wǎng)絡(luò)

ID:40849685

大?。?.04 MB

頁數(shù):10頁

時間:2019-08-08

Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經(jīng)網(wǎng)絡(luò)_第1頁
Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經(jīng)網(wǎng)絡(luò)_第2頁
Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經(jīng)網(wǎng)絡(luò)_第3頁
Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經(jīng)網(wǎng)絡(luò)_第4頁
Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經(jīng)網(wǎng)絡(luò)_第5頁
資源描述:

《Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經(jīng)網(wǎng)絡(luò)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、AutomaticLocalizationofCastingDefectswithConvolutionalNeuralNetworksMaxFergusonRonayAkYung-TsunTinaLeeKinchoH.LawEngineeringInformaticsGroupSystemsIntegrationDivisionSystemsIntegrationDivisionEngineeringInformaticsGroupCivilandEnvironmentalNationalInsti

2、tuteofStandardsNationalInstituteofStandardsCivilandEnvironmentalEngineeringandTechnology(NIST)andTechnology(NIST)EngineeringStanfordUniversityGaithersburg,UnitedStatesGaithersburg,UnitedStatesStanfordUniversityStanford,UnitedStatesronay.ak@nist.govyung-

3、tsun.lee@nist.govStanford,UnitedStatesmaxferg@stanford.edulaw@stanford.eduAbstract—AutomaticlocalizationofdefectsinmetalcastingsisThereareanumberofnondestructiveexamination(NDE)achallengingtask,owingtotherareoccurrenceandvariationintechniquesavailablefo

4、rproducingtwo-dimensionalandthree-appearanceofdefects.Convolutionalneuralnetworks(CNN)havedimensionalimagesofanobject.Real-timeX-rayimagingrecentlyshownoutstandingperformanceinbothimagetechnologyiswidelyusedindefectdetectionsystemsinclassificationandloc

5、alizationtasks.Weexaminehowseveralindustry,suchason-linewelddefectinspection[3].UltrasonicdifferentCNNarchitecturescanbeusedtolocalizecastingdefectsinspectionandmagneticparticleinspectioncanalsobeusedtoinX-rayimages.Wetakeadvantageoftransferlearningtoal

6、lowmeasurethesizeandpositionofcastingdefectsincaststate-of-the-artCNNlocalizationmodelstobetrainedonacomponents[4,5].Analternativemethodisthree-dimensionalrelativelysmalldataset.Inanalternativeapproach,wetrainaX-raycomputedtomography,thatcanbeusedtovisu

7、alizethedefectclassificationmodelonaseriesofdefectimagesandtheninternalstructureofmaterials.RecentdevelopmentsinhighuseaslidingclassifiermethodtodevelopasimplelocalizationresolutionX-raycomputedtomographyhavemadeitpossibletomodel.Wecomparethelocalizatio

8、naccuracyandcomputationalgainathree-dimensionalcharacterizationofporosity[6,7].performanceofeachtechnique.WeshowpromisingresultsfordefectlocalizationontheGRIMAdatabaseofX-rayimagesThedefectdetectionprocesscanbeframedaseitheran(GD

當前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。