Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經網絡

Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經網絡

ID:40849685

大?。?.04 MB

頁數(shù):10頁

時間:2019-08-08

Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經網絡_第1頁
Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經網絡_第2頁
Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經網絡_第3頁
Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經網絡_第4頁
Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經網絡_第5頁
資源描述:

《Automatic Localization of Casting Defects withConvolutional Neural Networks 鑄件缺陷的自動定位 卷積神經網絡》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫。

1、AutomaticLocalizationofCastingDefectswithConvolutionalNeuralNetworksMaxFergusonRonayAkYung-TsunTinaLeeKinchoH.LawEngineeringInformaticsGroupSystemsIntegrationDivisionSystemsIntegrationDivisionEngineeringInformaticsGroupCivilandEnvironmentalNationalInsti

2、tuteofStandardsNationalInstituteofStandardsCivilandEnvironmentalEngineeringandTechnology(NIST)andTechnology(NIST)EngineeringStanfordUniversityGaithersburg,UnitedStatesGaithersburg,UnitedStatesStanfordUniversityStanford,UnitedStatesronay.ak@nist.govyung-

3、tsun.lee@nist.govStanford,UnitedStatesmaxferg@stanford.edulaw@stanford.eduAbstract—AutomaticlocalizationofdefectsinmetalcastingsisThereareanumberofnondestructiveexamination(NDE)achallengingtask,owingtotherareoccurrenceandvariationintechniquesavailablefo

4、rproducingtwo-dimensionalandthree-appearanceofdefects.Convolutionalneuralnetworks(CNN)havedimensionalimagesofanobject.Real-timeX-rayimagingrecentlyshownoutstandingperformanceinbothimagetechnologyiswidelyusedindefectdetectionsystemsinclassificationandloc

5、alizationtasks.Weexaminehowseveralindustry,suchason-linewelddefectinspection[3].UltrasonicdifferentCNNarchitecturescanbeusedtolocalizecastingdefectsinspectionandmagneticparticleinspectioncanalsobeusedtoinX-rayimages.Wetakeadvantageoftransferlearningtoal

6、lowmeasurethesizeandpositionofcastingdefectsincaststate-of-the-artCNNlocalizationmodelstobetrainedonacomponents[4,5].Analternativemethodisthree-dimensionalrelativelysmalldataset.Inanalternativeapproach,wetrainaX-raycomputedtomography,thatcanbeusedtovisu

7、alizethedefectclassificationmodelonaseriesofdefectimagesandtheninternalstructureofmaterials.RecentdevelopmentsinhighuseaslidingclassifiermethodtodevelopasimplelocalizationresolutionX-raycomputedtomographyhavemadeitpossibletomodel.Wecomparethelocalizatio

8、naccuracyandcomputationalgainathree-dimensionalcharacterizationofporosity[6,7].performanceofeachtechnique.WeshowpromisingresultsfordefectlocalizationontheGRIMAdatabaseofX-rayimagesThedefectdetectionprocesscanbeframedaseitheran(GD

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。