gammaMAXT a fast multiple-testingcorrection algorithmGAMAMAXT:快速多重測試 校正算法

gammaMAXT a fast multiple-testingcorrection algorithmGAMAMAXT:快速多重測試 校正算法

ID:40849868

大?。?28.87 KB

頁數(shù):15頁

時間:2019-08-08

gammaMAXT a fast multiple-testingcorrection algorithmGAMAMAXT:快速多重測試 校正算法_第1頁
gammaMAXT a fast multiple-testingcorrection algorithmGAMAMAXT:快速多重測試 校正算法_第2頁
gammaMAXT a fast multiple-testingcorrection algorithmGAMAMAXT:快速多重測試 校正算法_第3頁
gammaMAXT a fast multiple-testingcorrection algorithmGAMAMAXT:快速多重測試 校正算法_第4頁
gammaMAXT a fast multiple-testingcorrection algorithmGAMAMAXT:快速多重測試 校正算法_第5頁
資源描述:

《gammaMAXT a fast multiple-testingcorrection algorithmGAMAMAXT:快速多重測試 校正算法》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、VanLishoutetal.BioDataMining(2015)8:36DOI10.1186/s13040-015-0069-xBioDataMiningSOFTWAREARTICLEOpenAccessgammaMAXT:afastmultiple-testingcorrectionalgorithmFran?oisVanLishout1,2*,FrancescoGadaleta1,2,JasonH.Moore3,LouisWehenkel1,2andKristelVanSteen1,2*Correspondence:f

2、.vanlishout@ulg.ac.beAbstract1SystemsandModelingUnit,Background:ThepurposeoftheMaxTalgorithmistoprovideasignificancetestMontefioreInstitute,Universityofalgorithmthatcontrolsthefamily-wiseerrorrate(FWER)duringsimultaneousLiège,Alléedeladécouverte10,4000Liège,Belgiumh

3、ypothesistesting.However,therequirementsintermsofcomputingtimeand2BioinformaticsandModeling,memoryofthisprocedureareproportionaltothenumberofinvestigatedhypotheses.GIGA-R,Avenuedel’H?pital1,4000Thememoryissuehasbeensolvedin2013byVanLishout’simplementationofMaxT,Sart

4、-Tilman,BelgiumFulllistofauthorinformationiswhichmakesthememoryusageindependentfromthesizeofthedataset.ThisavailableattheendofthearticlealgorithmisimplementedinMBMDR-3.0.3,asoftwarethatisabletoidentifygeneticinteractions,foravarietyofSNP-SNPbasedepistasismodelseffec

5、tively.Ontheotherhand,thatimplementationturnedouttobelesssuitableforgenome-wideinteractionanalysisstudies,duetotheprohibitivecomputationalburden.Results:InthisworkweintroducegammaMAXT,anovelimplementationofthemaxTalgorithmformultipletestingcorrection.Thealgorithmwas

6、implementedinsoftwareMBMDR-4.2.2,aspartoftheMB-MDRframeworktoscreenforSNP-SNP,SNP-environmentorSNP-SNP-environmentinteractionsatagenome-widelevel.Weshowthat,intheabsenceofinteractioneffects,test-statisticsproducedbytheMB-MDRmethodologyfollowamixturedistributionwitha

7、pointmassatzeroandashiftedgammadistributionforthetop10%ofthestrictlypositivevalues.WeshowthatthegammaMAXTalgorithmhasapowercomparabletoMaxTandmaintainsFWER,butrequireslesscomputationalresourcesandtime.Weanalyzeadatasetcomposedof106SNPsand1000individualswithinonedayo

8、na256-corecomputercluster.Thesameanalysiswouldtakeabout104timeslongerwithMBMDR-3.0.3.Conclusions:TheseresultsarepromisingforfutureGWAIs.Ho

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。