資源描述:
《Analysis, Geometry, and Modeling in Finance 13》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、Chapter12PortfolioOptimizationandBellman-Hamilton-JacobiEquationAbstractPricingandHedgingderivativesproductsisessentiallyaproblemofportfoliooptimization.Onceameasureofriskhasbeenchosen,thepricecanbedenedasthemeanvalueoftheprotandloss(P&L)andthebesthedgingstrategyistheoptimal
2、controlwhichminimizestherisk.IntheBlack-Scholesmodel,theonlysourceofriskisthespotprocessandtheoptimalcontrolisthedelta-strategywhichcancelstherisk.However,undertheintroductionofstochasticvolatility,themarketmodelbecomesincomplete.Theresultingriskisniteandthedelta-strategyisno
3、toptimal.Aportfoliooptimizationproblemappearsalsonaturallyifweassumethatthemarketisilliquidandthetradingstrategyaectsthepricemovements.Inthefollowing,wewillfocusontheseoptimalcontrolproblemswhenthemarketisincompleteandthemarketisilliquid.Ourstudyinvolvestheuseofperturbationme
4、thodsfornon-linearPDEs.12.1IntroductionSincethefamouspapersofBlack-Scholesonoptionpricing[65],someprogresshasbeenmadeinordertoextendtheseresultstomorerealisticarbitrage-freemarketmodels.Asareminder,theBlack-Scholestheoryconsistsinfollowinga(hedging)strategytodecreasetheriskofl
5、ossgivenaxedamountofreturn.Thistheoryisbasedonthreeimportanthypotheseswhicharenotsatisedunderrealmarketconditions:Thetraderscanrevisetheirdecisionscontinuouslyintime.Thisrsthypothesisisnotrealisticforobviousreasons.Amajorimprovementwasrecentlyintroducedin[6]intheirtime-dis
6、cretemodel.Theyintroduceanelementarytimeafterwhichatraderisabletorevisehisdecisionsagain.Theoptimalstrategyisxedbytheminimizationoftheriskdenedbythevarianceoftheportfolio.Theresultingriskisnolongerzeroandinthecontinuous-timelimitwheregoestozero,onerecoverstheclassicalresul
7、tofBlack-Scholes:theriskvanishes.339?2009byTaylor&FrancisGroup,LLC340Analysis,Geometry,andModelinginFinanceThespotdynamicsisalog-normalprocess(withaconstantvolatility).Asaconsequence,themarketiscompleteandtheriskcancels.Thissecondhypothesisdoesn'ttruthfullyre
ectthemarketasin
8、dicatedbytheexistenceofanimpliedvolatility.Inchapters5and6,we