Analysis, Geometry, and Modeling in Finance 13

Analysis, Geometry, and Modeling in Finance 13

ID:41345912

大?。?86.74 KB

頁(yè)數(shù):12頁(yè)

時(shí)間:2019-08-22

Analysis, Geometry, and Modeling in Finance 13_第1頁(yè)
Analysis, Geometry, and Modeling in Finance 13_第2頁(yè)
Analysis, Geometry, and Modeling in Finance 13_第3頁(yè)
Analysis, Geometry, and Modeling in Finance 13_第4頁(yè)
Analysis, Geometry, and Modeling in Finance 13_第5頁(yè)
資源描述:

《Analysis, Geometry, and Modeling in Finance 13》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

1、Chapter12PortfolioOptimizationandBellman-Hamilton-JacobiEquationAbstractPricingandHedgingderivativesproductsisessentiallyaproblemofportfoliooptimization.Onceameasureofriskhasbeenchosen,thepricecanbede nedasthemeanvalueofthepro tandloss(P&L)andthebesthedgingstrategyistheoptimal

2、controlwhichminimizestherisk.IntheBlack-Scholesmodel,theonlysourceofriskisthespotprocessandtheoptimalcontrolisthedelta-strategywhichcancelstherisk.However,undertheintroductionofstochasticvolatility,themarketmodelbecomesincomplete.Theresultingriskis niteandthedelta-strategyisno

3、toptimal.Aportfoliooptimizationproblemappearsalsonaturallyifweassumethatthemarketisilliquidandthetradingstrategya ectsthepricemovements.Inthefollowing,wewillfocusontheseoptimalcontrolproblemswhenthemarketisincompleteandthemarketisilliquid.Ourstudyinvolvestheuseofperturbationme

4、thodsfornon-linearPDEs.12.1IntroductionSincethefamouspapersofBlack-Scholesonoptionpricing[65],someprogresshasbeenmadeinordertoextendtheseresultstomorerealisticarbitrage-freemarketmodels.Asareminder,theBlack-Scholestheoryconsistsinfollowinga(hedging)strategytodecreasetheriskofl

5、ossgivena xedamountofreturn.Thistheoryisbasedonthreeimportanthypotheseswhicharenotsatis edunderrealmarketconditions:Thetraderscanrevisetheirdecisionscontinuouslyintime.This rsthypothesisisnotrealisticforobviousreasons.Amajorimprovementwasrecentlyintroducedin[6]intheirtime-dis

6、cretemodel.Theyintroduceanelementarytimeafterwhichatraderisabletorevisehisdecisionsagain.Theoptimalstrategyis xedbytheminimizationoftheriskde nedbythevarianceoftheportfolio.Theresultingriskisnolongerzeroandinthecontinuous-timelimitwheregoestozero,onerecoverstheclassicalresul

7、tofBlack-Scholes:theriskvanishes.339?2009byTaylor&FrancisGroup,LLC340Analysis,Geometry,andModelinginFinanceThespotdynamicsisalog-normalprocess(withaconstantvolatility).Asaconsequence,themarketiscompleteandtheriskcancels.Thissecondhypothesisdoesn'ttruthfullyre ectthemarketasin

8、dicatedbytheexistenceofanimpliedvolatility.Inchapters5and6,we

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。